Manipulator and Object Tracking for In Hand Model Acquisition

Michael Krainin, Peter Henry, Xiaofeng Ren, and Click to edit Master subtitle style Dieter Fox

University of Washington and Intel Labs Seattle

May 7, 2010

5/12/10

Problem Statement

- Robots can never be trained for all possible objects let them learn new ones Target Scenario:
- 1) Robot picks up unknown object using heuristic or feature-based techniques (e.g. [Saxena '08])
- 2) Robot examines object from multiple perspectives, much as a human might
- 3) Robot can use learned model for later tasks (&!-%)! detection, pose estimation, future frasping)

In-Hand Modeling

- Visual feature matching [Pan '09]
- ICP-based surface matching [Weise '09]
- No explicit tracking of hand
 - Hand subtraction not straightforward
- Cannot register textureless or 5/12/10 symmetric objects

Encoders for Object Modeling

Commonly used but requires high accuracy e.g. [Sato '97], [Kraft '08]

Proposed Framework

Use encoders only to the extent to which they are reliable

Use vision and shape to improve alignment

Depth Sensor

- 640x480 RGB + Depth at 30 Hz
 - Developed for gaming applications

5/12/10

Articulated ICP for Robot Arm and Hand Tracking

Joint Hand and Object Tracking

Object Modeling

5/12/10

/7/7

Articulated ICP

Goal: Find joint angles (and global transform) best aligning observed and expected clouds

Iterates between correspondence selection and parameter estimation

5/12/10

88

Integration Into Kalman Filter

State: Joint angles + global transformation

Encoders for motion update

State: Joint angles + global transformation $\mathbf{B}(\tilde{q}, -\tilde{q}, -\tilde{q$

Kalman, covariance fed back into ICP to give preference to adjusting less certain DoFs

 μ_{κ}

Tracking with Added Noise

Tracking Results

5/12/10

/1/1/1

Articulated ICP for Robot Arm and Hand Tracking

Joint Hand and Object Tracking

Object Modeling

Joint Tracking

- Motivation
 - Need accurate pose of object within hand
 - Object may occlude hand, making tracking more difficult

- Add pose of object within hand to Kalman state
- Add object matching into ICP

SIFT matching

- Use object texture for additional constraints
- Keep estimates of 3D locations of SIFT keypoints within object model
- Add geometrically consistent frame-to-model matches as point-to-point correspondences $|T(\kappa_{\sigma}) \kappa_{\tau}|^2$

$$T^* = \exp \mu \operatorname{in}[E_{\pi \tau - \pi \rho - \pi \lambda \sigma \nu \varepsilon}(T) + E_{\pi \rho \sigma \rho}(T) + E_{\sigma \sigma}(T)]$$

5/12/10

1414

Joint Tracking Results

Articulated ICP for Robot Arm and Hand Tracking

Joint Hand and Object Tracking

Object Modeling

Surfel Representation

"Surface Elements" – circular disks representing local surface patches

Existing representation from the literature [Pfister '00], [Habbecke '07], [Weise '09]

5/12/10

1717

Surfel Demonstration

5/12/10

Advantages of Surfels

- Simple update rules
- Incremental updating
- Occlusion checking
- Efficient representation (scalable)
- Automatic resizing

5/12/10

Modeling

Object detected based on tracking result

Surfel model transformed to align with sensor data

Surfels modified according to update

5/1**2'11'es**

2020

Tracking + Modeling

5/12/10

Modeling Properties

- Averaging of noise
- Can handle symmetric and textureless objects
 - Limitations
 - Holes where gripper occludes object
 - Rigid objects only

2222

Motion speed limited by

Modeling Results

Handling Multiple Grasps

- Switching Kalman filter
 - Examining object
 - Moving to or from table
 - Grasping or releasing
 - Between grasps

Summary

- Framework for simultaneously tracking robotic manipulator and modeling grasped objects
 - Incorporates information from encoders, vision, and depth
 - Joint estimation benefits tracking and modeling
- Accurate models of symmetric and featureless of symmetric and symmetric a

Future Work

Automatic generation of motion sequences

Self-supervised learning of objects and grasping strategies

Development of a shared object database

Questions ?

5/12/10

2727

Approach Outline

Articulated Tracking

Goal: Match a model of the arm (and manipulated object) into the sensor data

Use shape, visual, and encoder

inform

ICP Details

$$E_{pt-\pi -\pi \lambda lpha
u arepsilon}(T) = \int_{t=1}^{M} \omega_{i} \mu \inf_{arphi} ((T(\pi_{\sigma}^{t}) - \pi_{ au}^{arphi}) \cdot
u_{ au}^{arphi})^{2}$$