Inferring hand-object configuration directly from tactile data

Robert Platt MIT

Frank Permenter
Oceaneering Space Systems

Joel Pfeiffer Purdue University

Problem

Track "haptic features" in a flexible material by touch

- Buttons/grommets sewn into cloth
- Divots in flexible plastic

Today, I focus on the localization problem only...

Tools: compliance and tactile sensing

Yesterday's talk:

 Used compliance and tactile sensing to localize an inflexible object

Mode of interaction

- Hold material between thumb and forefingers
- 2. Squeeze and pull such that fingers slide over material

As a consequence of mode of interaction:

- State space: 2-d coordinates on flexible material
- Always pulling in one direction means that we can eliminate velocity component of state

Sensor model

Goal: model expected sensor measurements as a function of hand-feature state.

- Training phase where multiple "swipes" are performed.
- Measurements: 8 signals per phalange

"Haptic Map": mean signal as a function of 2-d state:

$$\hat{z}(x) = \frac{1}{k} \sum_{z \in N_k(x)} z$$

More haptic maps

Grommet

Snap

Application of particle filter

Measurement model: Gaussian over measurements fit to nearest neighbors in state space:

$$P(z \mid x) = N(z \mid \hat{z}(x), \Sigma(x)) \qquad \hat{z}(x) = \frac{1}{k} \sum_{z \in N_k(x)} z$$

Mean and covariancecalculated over knearest neighbors

Different models

Gaussian model:
$$P(z \mid x) = N(z \mid \hat{z}(x), \Sigma(x))$$

Independent fingers:
$$\Sigma(x) = \begin{bmatrix} \Sigma_1(x) & 0 \\ 0 & \Sigma_2(x) \end{bmatrix}$$

Mixture of Gaussians:
$$P(z_i \mid x_i) = \sum_{(x,z) \in D} N \begin{pmatrix} x_i \mid x \\ z_i \mid z \end{pmatrix} \begin{pmatrix} \Sigma_x & 0 \\ 0 & \Sigma_z \end{pmatrix}$$

Performance

How do you know you got it right?

Reduce overfitting via on-off bump model

1. Factor likelihood by phalange: $P(z \mid x) = \prod_{k} P(z^{k} \mid x)$

2. Enforce a uniform distribution over "off bump" region:

Grommet application

Fabric pivots freely

Contributions

1. Accurate localization (0.1 inch) of features in fabric for the first time.

2. Propose a mode of interaction that simplifies the dimensionality of state estimation problem

3. Propose relevant measurement models

Problem

- Buttons/grommets sewn into cloth
- Divots in flexible plastic

Measurement model: the "haptic map"

Training swipes:

$$P(z \mid x) = N(z \mid \hat{z}(x), \Sigma(x)) \qquad \hat{z}(x) = \frac{1}{k} \sum_{z \in N_k(x)} z$$

Approach: particle filter

- Training phase: model relation between finger positions and sensor data
- 2. Test phase: estimate state based on sensor data

Gaussian measurement model:

CSALL