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Abstract— Robot manipulation tasks for a mobile, per-
sonal robot will often be importantly distinct from those
of a traditional, factory robot arm; correspondingly,
appropriate motion planning solutions may be notably
different, as well. This paper introduces novel defini-
tions of and solution methods for optimal kinodynamic
planning for mobile robot manipulation applications. In
particular, we consider a generalized, real-world scenario
where (1) robots must interact safely with humans and
with objects in home environments, (2) there may be
significant uncertainty about the impedance properties
of objects to be manipulated, and (3) there may also
be significant environmental and sensory noise. Unlike
traditional kinodynamic planning, where minimum time
trajectories are generally considered optimal, we suggest
that the paramount goal in planning for personal robots
should instead be safety; that is, we should minimize the
probability of “failure” or at least ensure it is below some
threshold. We discuss the appropriateness of this defini-
tion of optimality, suggest a generalized methodology for
achieving optimal or near-optimal solutions, and present
a simple, 2D manipulation problem to demonstrate the
approach.

I. INTRODUCTION

This paper discusses the problem of selecting a
particular initial robot pose and subsequent manipu-
lator trajectories for a mobile robot with arms. This
problem is a particular case of kinodynamic plan-
ning: finding motions for a robot that obey both
(1) kinematic constraints, e.g., positions with feasible
kinematic configurations that avoid collisions with
obstacles, and (2) dynamic (or differential) constraints,
e.g. velocities and accelerations that do not exceed ac-
tuator limitations. This general kinodynamic problem
becomes more challenging for robots that operate in
environments where safety is paramount and where the
environment is not perfectly known, and we believe
the problem statement for kinodynamic planning in
this regime should correspondingly be modified.

For kinodynamic motion planning, optimality typi-
cally means a minimum time solution — getting from a
start to an end configuration as quickly as possible —
which is an appropriate definition for traditional, high-
impedance robot arms. We suggest a new definition of
optimality is required when planning motions for per-
sonal robots, and we present a toy example to illustrate
a proposed method for deriving corresponding optimal
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plans. Specifically, we propose that the paramount
goal for mobile manipulators should be to minimize
the chance of “failure”, where failure is defined to
encompass all undesirable outcomes, as discussed
further in Section II. Employing safer, friendlier robots
(appropriate for the home) is a practical necessity
for the future, but making robots safer is likely to
increase the impact that noise and uncertainty have
on the dynamics of robot manipulation tasks. There is
a need for improved motion planning techniques that
can derive optimal control policies in this important,
new regime.

A. Low-impedance personal robots

Mechanical impedance, which is analogous to elec-
trical impedance, is the frequency-dependent rela-
tionship describing the force required to achieve a
particular velocity of motion:
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Traditional, factory-use robot manipulators are de-
signed with speed and accuracy as obvious goals
and correspondingly have quite high mechanical
impedance (i.e., stiffness), while humans and other
animals interact with the world with a much higher
degree of compliance [24]. A factory or laboratory en-
vironment for a robot is generally well-characterized,
with little uncertainty; in this regime, fast and pow-
erful robotics are a practical solution. By contrast, in
situations where there is significant uncertainty, due to
incomplete or noisy sensing, both about geometry of
the environment and about the impedance (i.e., mass,
viscous damping and/or friction, spring stiffness) of
the objects to be manipulated, a stiff robot is simply
not a safe or practical solution: it may seriously dam-
age itself, the environment and nearby humans dur-
ing both unplanned collisions and precisely-planned
manipulation tasks. It is correspondingly becoming
increasingly clear that robots designed with non-trivial
compliance are a practical solution if robots and
robotic devices are to leave well-characterized factory
and laboratory settings and enter our homes [25], [23],
(31, [10], [311, [33], [15].

While there are important motivations for designing
personal robots with low-impedance: for safety and
comfort, and to exploit the “forgiving” effects that
compliant passive dynamics may lend during inter-



actions between the robot and an uncertain environ-
ment, there are also trade-offs in adopting such a
design. Lower robot stiffness inherently means less
ability to resist perturbations, resulting in lower po-
sitional accuracy. Using lower forces to accomplish
manipulation tasks will also generally results in lower
bandwidth [13], and the dynamic behavior of a low-
impedance robot arm is coupled, nonlinear and de-
pends highly on the arm’s configuration in space [1].

B. Kinodynamic Planning

Over the past 25 years, a substantial body of work
has developed on kinodynamic motion planning for
robots. Initial approaches studied trajectory planning
when a particular path is specified [4], with inertial
constraints [22], and over a discrete, tesselated sub-
space of the full problem [26]. This was followed
by significant results in optimal and near-optimal
solutions for low-dimensional, classical kinodynamic
planning [9], [8], [12], [11].

For higher degree-of-freedom robots, however, find-
ing optimal solutions becomes increasingly challeng-
ing, and many popular strategies used today involve
sampling state space to find feasible but non-optimal
solutions. Such approaches include rapidly-exploring
randomized trees (RRTs) [20], [19], [21], including
cases in which obstacles move over time [14]; proba-
bilistic roadmaps [18]; and a variety of other, sample-
based approaches [2], [32], [28], [16]. These ap-
proaches generally involve sequential planning, where
a feasible kinematic plan is found first and the “speed”
with which it is executed is then adjusted to ensure
dynamic feasibility. For underactuated, dynamic robot
motions (e.g., locomotion and manipulation), such
sequential kinodynamic planning methods may no
longer be possible, since motions are coupled and will
only succeed when performed at appropriate speed [6],
[27]. The development of new motion planning tech-
niques for such underactuated systems [30] is an area
of active research, as are methods for insuring that
sample-based planners converge upon optimal solu-
tions [17]. Developing practical methods to generate
optimal motion control strategies for underactuated
and often underpowered tasks such as manipulation
and locomotion in an important and active field of
research; this paper suggests a new modeling and
design approach toward this ultimate goal.

II. PROBLEM STATEMENT

Central to this paper, we argue that in compliant,
mobile manipulation, it may often be impossible to
guarantee the successful completion of a desired task,
no matter how conservatively we design a motion
plan. In a real-world environment, where the geometry
and impedance characteristics of the surroundings are
not known perfectly, it may be impossible to know

with absolution that a particular manipulation task will
not result in failure. Examples of failures include:
collisions, infeasible kinematics, dropping a poorly-
grasped object, insufficient actuator power, excessive
time spent accomplishing a task, damage to a person
or object during a planned interaction, and/or any other
task-specific outcome defined as unacceptable.

All hope is not lost, however! Humans and other
animals are subject to the same difficulties, and
they can often perform with astonishing agility
and dexterity, nonetheless. Even without absolute
guarantees of success, one can still plan motions
that make the risk of failure acceptably (or even
vanishingly) low. We propose the following definition
of “optimality” for the problem of kinodynamic
motion planning for mobile manipulators:

DEFINITION: Optimal kinodynamic motion plans
are those that minimize the probability of failure.

In Section III, we outline an method to find an optimal
solution, using a variation of an approach used in
finding near-optimal solutions for an underactuated
biped model on rough terrain [7], [5].

III. GENERAL THEORY

This section outlines a general framework for de-
signing reliable robot motion control, in which the
robot and its environment are together modeled as a
Markov decisions process (MDP). We focus first on
the rationale for this approach, without outlining an
the exact approach, which may depend heavily on the
types of uncertainty there are in a particular task. This
is followed by a toy example in Section IV.

Inherent in our modeling throughout is the assump-
tion of a “go/no-go” outcome for a robot task. In
legged locomotion, for example, one obvious no-go
status is “fallen down”, and the dynamics of manipu-
lation tasks are similarly punctuated by dramatic, dis-
crete event: objects can fall out of grasp, spring-loaded
doors may resist opening, and collisions can occur.
One obvious objective is: to maximize the likelihood
a robot will successfully complete one or more tasks.
We emphasize here that this is usually the true primary
goal in motion planning for a robot. Minimizing some
quantifiable combination of undesirable costs, such as
time or energy, is frequently a secondary goal.

For particular robot manipulation tasks in well-
characterized environments, it may be both quite valid
and practical to assume that success can be guaran-
teed. For example, this may be the case when the
environment is well-characterized, sensors have little
noise, and we are confident of achieving sufficient
actuator torques and a good grasp wrench for a given
set of tasks. In this regime, we take success for granted



and can instead focus on optimizing speed or power
consumption.

By contrast, bringing robots out of structured
environments and into often cluttered (and changing)
home environments generally makes such ‘“near-
guarantees” of success much more unlikely, as do
any reductions in actuator torque outputs that are
required to ensure safety. In this regime, we suggest
the following general approach:

1. Carefully define “success” for a given task (or
set of tasks).

2. Estimate the critical sources of uncertainty.

3. Create a reduced-order Markov model of the
dynamic system.

4. Solve for the control policy that maximizes the
probability of success.

For step 1, success will often require moving an
object “from A to B”. However, the definition of
success can also incorporate notions of time and/or
power limits for completion of a task, to ensure that
the robot does not move with seemingly unreasonable
trepidation. We can also require that motions do not
startle humans nearby, or that they leave explicit safety
margins for collisions (in particular, around animate
objects).

In estimating uncertainty (step 2), it may often be
challenging and impractical to quantify exact prob-
ability distributions. Fortunately, identifying what is
uncertain — in the geometry and/or impedance of sys-
tem, for instance — is often more critical that precise
quantification of degree. For example, modeling the
mass of an object as uncertain may automatically
result motion plans that ensure a robot arm is oriented
in a way that best exploits the non-linear relationship
between manipulator geometry and force output at
the end effector. When possible, however, one should
avoid being unnecessarily conservative about less sig-
nificant sources of uncertainly, as this may result in
awkward and wasteful motions that are not actually
beneficial. Developing improved techniques for esti-
mating the sources and magnitudes of uncertainty in
a robot manipulation task is an important problem
both for the success of this approach and in personal
robotics, generally.

Capturing the essential dynamics for step 3 could
theoretically involve an enormous number of potential
states at times, if we have many sources of uncertainty
across several degrees of freedom. Thankfully, many
of the unknowns in geometry and impedance in a
system will remain constant throughout a particular
trial, so the transition matrix describing the dynamics

will be quite sparse, simplifying analysis or even
allowing us to break the problem into a set of “what
if” scenarios that are each straight-forward to analyze
(maintaining several, smaller transition matrices than
cannot cross-communicate, or even without creating
any transition matrix at all).

Finally, once we have described the desired task(s)
of a stochastic dynamic system, we can employ tech-
niques in machine learning to solve for an optimal
policy (step 4). When good models are practical, this
step may simply involve policy iteration: alternately
solving Bellman’s optimality equation (to find the
value, Vy(s), of every state for a given policy) and
calculating the best policy (7(s)) for a given defini-
tion of V(s), until this iterative process converges
to an optimal policy; and when such models are
not practical, we can employ algorithms for learning
online [29].

IV. TOY EXAMPLE

In this section, we: (1) present a toy model of a
mobile robot manipulator in an uncertain (but char-
acterizable) environment, (2) define a desired set of
tasks and the dominant failure modes that may occur,
and (3) solve for the optimal kinodynamic motion plan
that minimizes the probability of failure.

Z
! 0
| / . 2
Ty —> /
P60 \
I \
(Toy 20) !
Fig. 1. 2D robot manipulator model

Figure 1 shows a simple, 2D manipulator model. We
assume the robot can move to a desired position, ), in
preparation for a manipulation task (where it remains
throughout the task), and that it has a telescoping torso
that brings the shoulder to some height, z; both x,, and
z are measured with respect to a global coordinate
system with origin (z,, z,). The arm itself has only
two degrees of freedom: 61 and A5, which define the
orientations of the first two links (L and Ls). For this
toy model, we assume the third link is constrained
(through control) to remain parallel to the ground.
Given the variables z,, z, 61, and 65, we assume
(for simplicity) that contact with an object occurs at a
particular “end effector” location (x., z.), at a length
L3 along the hand, so:



Te = Tp + L1 sin 01 + L2 sin (91 + 92) + L3 (2)
ze =2z — Ly cosfy — Ly cos (01 + 62) 3)

Additionally, we will assume that each joint has a
torque limit (2 N-m). The range of possible forces
at the end effector then depend on the impedance
properties of the robot arms (mass distribution, etc.),
and the current state (kinematic configuration and joint
velocities) of the robot. (We will not detail the exact
model assumed here, for brevity.)

As a first step, we define a set of desired manip-
ulation tasks that must be successfully completed to
achieve. Referencing the cartoon in Figure 2, Task 1
is to move a flower vase of unknown mass, m,,, from
the top shelf to the lower shelf and back again (e.g.,
to clean or inspect the shelf), and Task 2 is to fold
down the lower shelf. This lower shelf has some mass
distribution, m, and it is connected to a fixed wall
via a linear spring, ks, and a damper b,. This mass,
stiffness and damping constitute some generalized
mechanical impedance, and in this problem, we will
assume these properties are known very well. To focus
on basic ideas more clearly in this paper, we will
also require that both tasks be done relatively slowly.
This allows us to use a quasi-static force balance
(e.g., that &, Zp, z and Z are all very small) for our
analysis. In general, however, such dynamics would
be not be ignored: they would simply and elegantly
be incorporated in the full MDP model that defines
the possible state-to-state transitions.

If all of the impedances contributing to the quasi-
static forces (i.e., mg, ks, and m,) are small enough,
and if we assume perfect knowledge of the geometry
and a perfect ability to grasp, then this problem
reduces to one of kinematics, only; we just need
to ensure the robot is in an appropriate location
(zp) where the end effector can reach all planned
motion trajectories. Figure 3 shows an example of
the reachable workspace for a particular z,,. The two
areas bounded by dashed lines show regions when z
is fixed at either a minimum or maximum value; the
solid boundary defines the total reachable workspace
if the robot is allowed to extend its torso during
manipulation.

Of course, we are specifically interested in cases
where the problem involves more than kinematics, so
(as step 2), let us now identify any critical sources of
uncertainty. As an example, let us first assume we are
uncertain if the vase is full of water or not. Figure 4
shows the (somewhat arbitrary) probability density
function we will use to quantify our uncertainty about
the mass of the vase, m,, in our toy example. Ad-
ditionally, we will assume that we are very familiar
with the impedance properties of the shelf (m, and k,
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Fig. 2. Example tasks: manipulating objects with impedance.

matter, but not b,, given our quasi-static assumption),
and we will also assume for now (perhaps somewhat
naively) that the geometry can be perfectly sensed and
controlled.

Figure 5 shows the allowable locations, (z,,z),
for the robot such that it is kinematically and/or
dynamically capable of various subsets of the required
tasks. The largest area (in gray, blue and red) is the
region in which grasping the vase is kinematically
feasible for the manipulator; the next smallest (blue
and red) is the subset of this region for which lowering
the shelf (assuming a particular contact point on the
shelf) is also possible; and the smallest region (red,
only) shows the subset of these robot positions at
which the robot can apply adequate torque at each
moment as it slowly lowers the shelf. This final region
would also correspond to robot stance locations where
we could theoretically guarantee both tasks will be
completed with probability one if we could determine
that m,, if was appropriately small enough.

Now (as step 3), we can consider the effect of
our uncertainty in m, on the dynamics of success
and failure in completing our tasks. For this simple
example, we need only consider the probability that
the weight of the vase will exceed the vertical force
the robot can generate at the end effector ar any
point along the trajectory. Here, we analyze only the
shortest path for the vase: two straight line segments,



Fig. 3. “Reachable” workspace, for fixed x; and full range of Az
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Fig. 4. Probability density function (PDF) for mass of vase

first to the left (off of the top shelf) and then down
(to the lower shelf). For any given robot location, we
can solve for the lowest (“worst case”) threshold in
achievable I, while following the desired end effector
path; the probability of failure is simply the area
in Figure 4 above the corresponding critical mass,
F./g. Figure 6 presents a contour plot of the resulting
probability of success across all (x,,z) combinations
(assuming z remains constant throughout both tasks);
kinematically infeasible regions have a probability that
is strictly zero (shown in dark blue), of course.

The optimal (z,, z) location on Figure 6 is labeled
with a large, green dot. For our simple example, this
2D robot pose location is the only control decision
(step 4) to be made. Notice that this point is quite
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0.95

Robot height: z (m)

0.8

-0.5 -0.45 -0.4 -0.35 -03 -0.25 -0.2 -0.15
Robot position: % (m)

Fig. 6.

my

Probability of success, for exact kinematics and PDF of

close to the edge of the boundary of the kinematically
feasible region; this is because we assumed geometry
was known and controlled perfectly in our model.
Intuitively, one would expect the best solution would
keep the robot within some “safety margin” of feasi-
bility. We have intentionally provided a toy example
that violates this to emphasize our point throughout:
that the real goal is to maximize success. A kinematic
safety margin inherently implies there is additional
uncertainty somewhere in the system, and a margin for
error will naturally emerge if we appropriately include
geometric uncertainty in the underlying model. As
mentioned in Section III, even a rough (conservative)
estimate of uncertainty is often adequate to capture
the dominant routes to failure.

To illustrate the inclusion of kinematic uncertainty
in our discretized representation of the dynamic sys-
tem, we will now assume a probability mass distribu-
tion, shown in Figure 7, for errors in the initial position
of the vase. This PMF corresponds to a standard
deviation of 1 cm in the actual position of the vase, and
we assume that this error can be detected as the arm
approaches the vase (so it would only cause failure
if the reach was infeasible; not because the vase is
ultimately grasped in the wrong location).

Prob. Mass Fn. (PMF)

Fig. 7. Uncertainty in geometry (e.g., ) can also be modeled

Propagating the effects of this new noise in the
geometric location of the vase, we obtain a revised



estimate of the overall probability of success as a
function of the robot stance location, shown in both
Figures 8 and 9. (Only the color axes differentiate
the two plots; Figure 9 shows any region with a
probability less than 80% as dark blue; only regions
with zero probability are that dark in Figure 8.) The
optimal robot pose location has now shifted further
from the edge of the “no-noise” feasible kinematic re-
gion boundary, which is overlaid as a dashed boundary
in both Figures 8 and 9, for better comparison with
Figure 6.
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Fig. 8. Probability of success, both m, and xz, are uncertain
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Fig. 9. A rescaled color axis (see text), to highlight danger zones

This toy example is primarily intended to motivate
the central idea of maximizing the probability of
success. Additionally, it illustrates how the familiar
concept of a safety margin emerges naturally as a
consequence of reasonable, approximate models of
the uncertainty. Even arbitrarily-defined safety mar-
gins may sometimes be adequate, as they often act
indirectly as a means of increasing our probability
of success. However, the kinematics and dynamics
of manipulation problems are highly nonlinear: we
can do much better that an arbitrary margin, and it is
certainly possibly for inappropriate safety margins to
lower our probability of success instead of improving
it 1!

IThe same statements are true of stability margins for walking
robots, such as the zero-moment point (ZMP) margin: such margins
are really an indirect tool toward our true goal of “success”, and we
should be able to do better by modeling the underlying dynamics.

V. FUTURE WORK

Briefly but importantly, we note that although the
policy in our toy example consisted only of selecting a
static pose for the robot, in general, one would develop
a rich policy for controlling the various positions,
velocities and forces of the robot to accomplish a task.
Methods for doing so are the subject of future work.

VI. CONCLUSIONS AND DISCUSSION
A. Conclusions

We propose a new approach for kinodynamic plan-
ning for mobile robots in real-world environments,
defining optimal motion plans as those that maximize
the probability of success at a desired set of tasks.
Real-world environments often present inherent, non-
trivial stochasticity, and compliant robots may be
particularly sensitive to environmental perturbations.
As a consequence, it becomes increasingly relevant for
an autonomous robot to select actions that will directly
minimize the probability that these uncertainties will
result in failure.

We further propose that one method for minimizing
failure rate is to model the robot, its environment
and any desired task(s) as a Markov decision process
(MDP) and to solve for the control policy that mini-
mizes the probability of transitioning into an absorb-
ing, failure state. Specifically, we wish to minimize
the long-term average rate of failure events, which
can be determined from the transition matrix [7].
In this paper, we solved for a trivial “pose” policy,
testing discrete combinations of body poses to find an
approximate optimal solution; a fuller policy can be
found by incorporating more dynamics (velocities and
accelerations), by allowing a fuller set of end effec-
tor trajectories, and by using gradient-based learning
methods to converge on a locally-optimal policy.

B. Discussion

A key step in modeling the system dynamics is to
characterize the level of uncertainty there is in the en-
vironment. This can be a challenging problem in itself,
and we suggest it is therefore an important avenue for
future research in robotics. However, we expect that
even bad (e.g., highly conservative) estimates of the
variability of the system will often provide reasonable
(near-optimal) solutions. Identifying the bounds in
error for which this statement is true is yet another
direction for research.

Although we focus on robot manipulation in this
paper, the same general ideas are applicable toward
any robotic or mechatronic system where failures may
occur due to underactuation and/or under-powered
actuators, or due to environmental uncertainty and/or
stochasticity. Pretending that failures can be avoided
absolutely is naive; it is more practical and helpful



toward the advancement experimental robotics to ad-
dress the critical issues of estimating and minimizing
failure rates directly.
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