Hierarchical Task and Motion Planning in the Now

Tomás Lozano-Pérez Leslie Pack Kaelbling

MIT CSAIL

What next?

Bridging the gap

Problem is hard:

- very high dimensional configuration space
- very long planning horizon

We can solve:

- discrete search problems
- short horizons

A bridge to somewhere

Two insights:

- Regression-based planning lets us construct an appropriate finite search space on the fly
- Hierarchical planning and execution reduces one long-horizon problem to many short ones

A bridge to somewhere

Two insights:

- Regression-based planning lets us construct an appropriate finite search space on the fly
- Hierarchical planning and execution reduces one long-horizon problem to many short ones

Symbols to Angles

Goal set is abstract, symbolic

tidy(house) ^ charged(robot)

Goal Regression

Weakest precondition of goal set under each action sequence

Test whether start state is in a pre-image

Represent goal and pre-images as conjunctions of predicates

Why regression?

Can't construct a complete representation of the start state and plan forward symbolically

- infinitely many geometrical regions
- too many objects

Only need to test whether logical conditions

defining pre-image are true in geometric start state

Wash object A

Primitive operations

Pick and place (object, targetRegion)

- pick object pose in targetRegion
- pick grasp
- plan paths with RRT

Run washer

Planning operators

PickAndPlace(O, S, R):

exists: $S \in \{currentLoc(O), parkingFor(O)\}$

exists: $P \in pathFor(O, S, R)$

pre: ClearX(sweptVol(P), O), In(O, S)

result: In(O, R)

refinement: PandPPrim(O, R)

Not STRIPS:

- domain of objects not known a priori
- · add / delete 'lists' are infinite

Suggesters

```
PickAndPlace(O, S, R):
    exists: S ∈ {currentLoc(O), parkingFor(O, tabus)}
    exists: P ∈ pathFor(O, S, R)
...
```

- Can't enumerate all possible places from which we might have moved the object to its destination
- Make suggestions based on current geometry
- Respect constraints derived from current planning context, e.g. tabus

Parking suggestion

Brown: tabu regions

Green: parking

Path suggestion

Gold: target region

Purple: path

Geometric inference

Computing weakest preconditions

- STRIPS uses finite lists of fluents that are changed by an operation
- We provide procedures that test pairs of geometric fluents for contradiction and entailment

In(O1, R1) contradicts ClearX(R2, Obs2) iff ...

Regression plan

One planning problem:

- 4 primitive steps
- 7 operators
- 155 search nodes

blue: goal

orchid: operator green: primitive

A bridge to somewhere

Two insights:

- Regression-based planning lets us construct an appropriate finite search space on the fly
- Hierarchical planning and execution reduces one long-horizon problem to many short ones

Hierarchy can reduce search space

Subtrees represent serializable subgoals

Hierarchical semantics

Subgoal is an abstract operator:

What does it mean to sequence two subgoals?

Marthi, Russell, Wolfe

Satanic Semantics

We have to handle any outcome the devil picks

Preconditions of op2 can be achieved from any state resulting from op1

Fold preconds into operator

Planning in the now

 maintain left expansion of plan tree

execute primitives

plan as necessary

In the now

- Don't think about all the ways pp(b, r1) could have terminated
- When it is time to plan for clean(a), whatever resulted will be our start state

Wash A

Maintenance conditions passed down and back

Six planning problems:

- 4 primitive steps
- 34 search nodes, total

clean(a)

A:runWasher(a)

Recovery from assumptions

Serialization:

 Because maintenance conditions are propagated forward, eventually entire joint planning problem will be solved

Suggestion violates constraints:

Call real planner

Suggestions are insufficient:

Sample or enumerate possible values

Framework generalizations

- Uncertainty
 - act to gain information
 - expectation wrt current and future states
- Learning
 - which preconditions don't serialize
 - cost function
 - heuristic
 - suggesters

What next?

clean(kitchen)
clean(stove)
putAway(pan)
move(board)
pick(board)
moveTo(Θ)

Related work

- Cambon, Alami and Gravot intertwined STRIPS + motion planner
- Plaku and Hager STRIPS planner as heuristic
- Stilman and Kuffner movable obstacles
- Hauser and Latombe task + PRM
- Choi and Amir generate symbolic operators from motion planner
- Dornhege et. al semantic attachment to STRIPS planner
- Wolfe, Marthi and Russell hierarchical STRIPS planning
- Sacerdoti –hierarchical STRIPS planning
- Nourbahksh interleaved plan and execute