Optimal Kinodynamic Planning for Compliant Mobile Manipulators

Katie Byl UC Santa Barbara

On Optimal Kinodynamic Planning for Compliant Mobile Manipulators

Katie Byl UC Santa Barbara

Overview

- What should be optimized
 - Robots have stepped outside factory environments
 - Challenges and goals in robotics have changed
- Scalar metrics and their estimation
 - How to judge overall task performance
 - How to estimate low-level performance
- Tools for policy improvement
 - On-going challenges in machine learning

Overview

- What should be optimized : Reliability
 - Robots have stepped outside factory environments
 - Challenges and goals in robotics have changed
- Scalar metrics and their estimation
 - How to judge overall task performance
 - How to estimate low-level performance
- Tools for policy improvement
 - On-going challenges in machine learning

Kinodynamic Planning

- Kinematics: geometric constraints
 - feasible, and without collisions
- Dynamics: differential constraints
 - velocity and torque limits
- Traditional **optimization** in robotics?
 - minimum time solutions

Canny, Donald, Reif and Xavier (1988-1993)

Kinodynamic Planning

- For high-DOF robots (e.g., humanoids):
 - Finding any feasible solutions is challenging
 - Typically, such solutions are not optimal

Example:

- Rapidly-exploring Randomized Trees (RRTs)
 - Sequential process:
 - First, find feasible kinematic trajectories
 - Then, ensure differential constraints (adjust speed)

LaValle and Kuffner (1998-2001)

• (Agree on) simple definitions:

• What is success?

What are appropriate metrics?

How to accomplish these optimizations

- (Agree on) simple definitions:
 Optimal = maximizing probability of success
- What is success?

- What are appropriate metrics?
- How to accomplish these optimizations

- (Agree on) simple definitions:
 Optimal = maximizing probability of success
- What is success?
 Varies, to encompasses task-specific concepts
- What are appropriate metrics?
- How to accomplish these optimizations

- (Agree on) simple definitions:
 Optimal = maximizing probability of success
- What is success?
 Varies, to encompasses task-specific concepts
- What are appropriate metrics?
 Again, probability of success
- How to accomplish these optimizations

- (Agree on) simple definitions:
 Optimal = maximizing probability of success
- What is success?
 Varies, to encompasses task-specific concepts
- What are appropriate metrics?
 Again, probability of success
- How to accomplish these optimizations
 Model low-level (Markov) transition probabilities

Why use such a broad goal...

- Success definitions vary (across applications):
 - Optimizing probability can encompass anything
- Other metrics are indirect / imprecise / vague
 - Example: a geometric "safety margin" is a proxy
 - In stochastic models, exact safety margins emerge

Why use such a broad goal...

- Success definitions vary (across applications) :
 - Optimizing probability can encompass anything
- Other metrics are indirect / imprecise / vague
 - Example: a geometric "safety margin" is a proxy
 - In stochastic models, exact safety margins emerge
- Stochasticity and underactuation dominate

Locomotion ←→ manipulation

Locomotion ← manipulation

Shared challenges

Mechanical impedance:

$$Z(s) = \frac{F(s)}{V(s)}$$

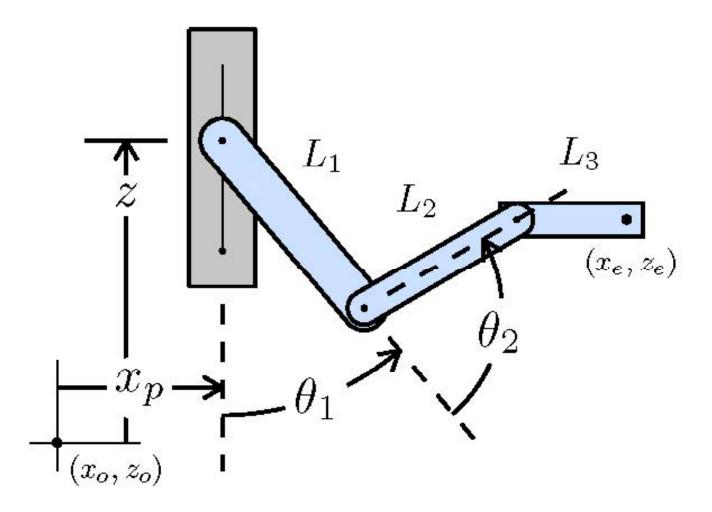
- stiff / compliant
 precise / adaptable] Tradeoffs
- Significant uncertainty and noise
 - "mixing" effects cause perturbations to propagate
- Sensing the environment
 - Visual and tactile; geometry and impedance
- Contact / interactions difficult to model
 - Rolling, sliding, deformations

Motivation

Real humans sometimes fail:

Trip, fall, drop objects, bump into furniture... ...but usually recover.

Same performance expectations for robots
 A balance between risk and reward.



Two tasks:

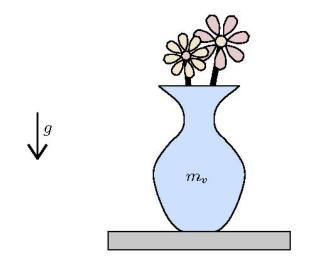
- 1. Move and replace vase
- 2. Lower shelf

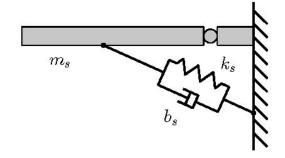
Assumed Known (for now):

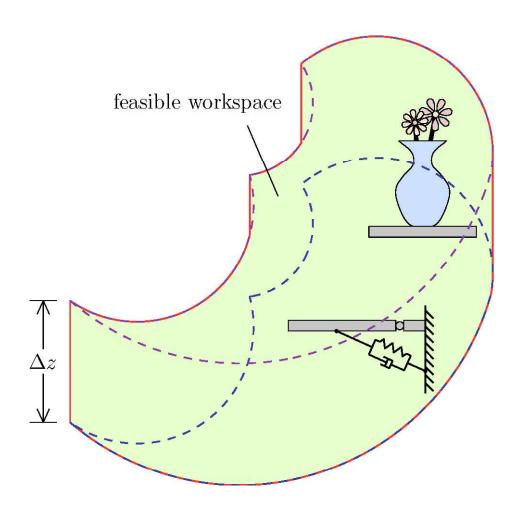
- Geometry
- Dynamics of shelf: spring-mass-damper (shelf impedance)

Unknown:

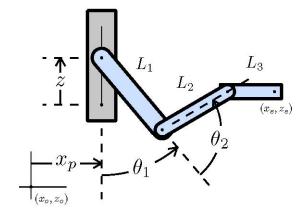
Mass of vase (vase impedance)

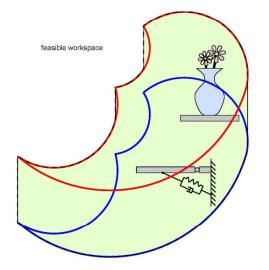




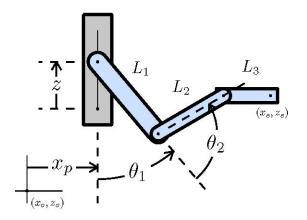


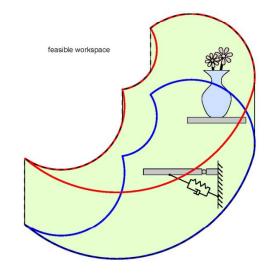
- Planner selects:
 - Initial body pose
 - Joint trajectories
 - Variable torso height



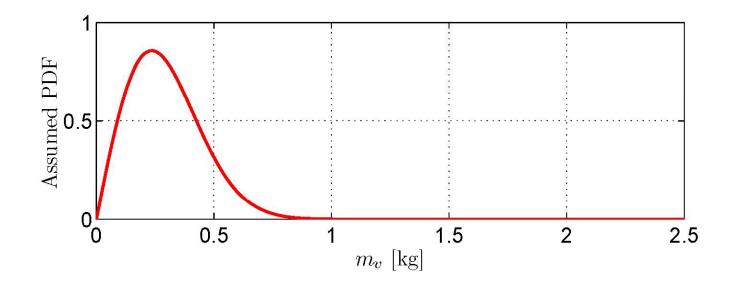


- Planner selects:
 - Initial body pose
 - Joint trajectories
 - Variable torso height
- No speed requirements
- Failure modes:
 - Insufficient forces
 - Infeasible kinematics



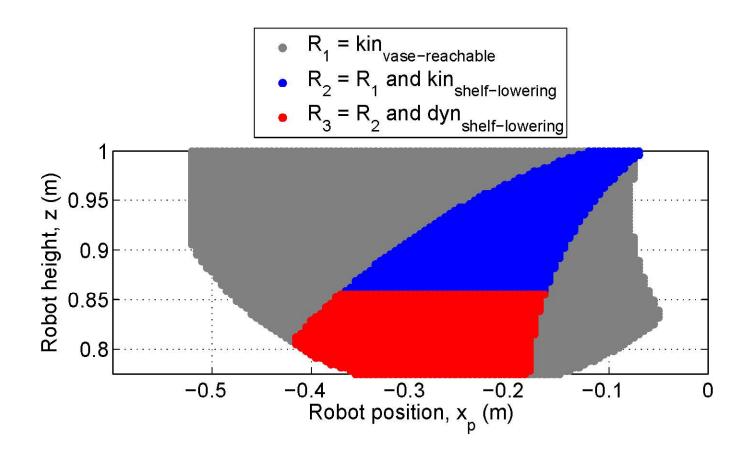


- Model variability in mass of vase
 - Probability density function (PDF)



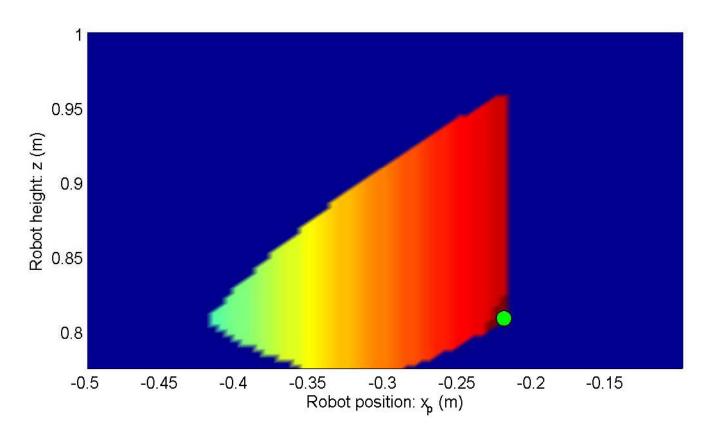
Feasible 2D poses for invariant kinodynamic constraints

• Considering only known properties : DETERMINISTIC feasibility



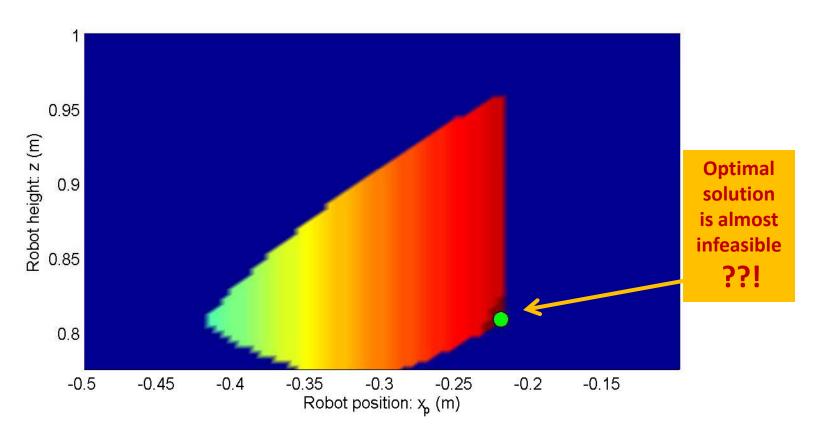
Kinematically feasible, with uncertainty in mass of vase

Plot show probability of success: STOCHASTIC feasibility

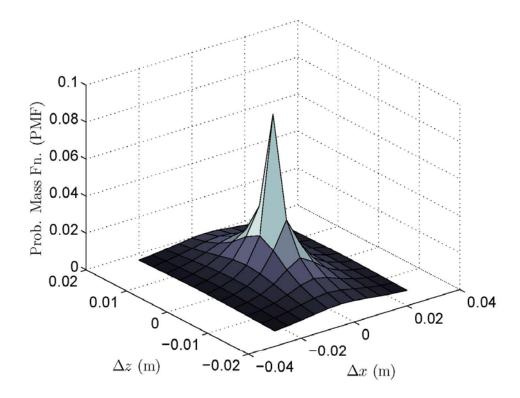


Kinematically feasible, with uncertainty in mass of vase

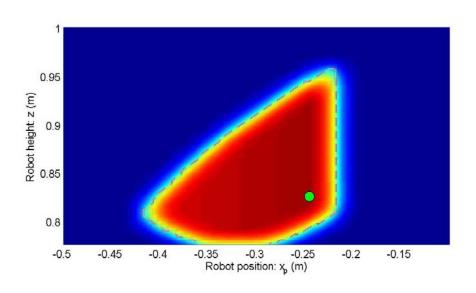
Plot show probability of success: STOCHASTIC feasibility



- Add some uncertainty in geometry, too
 - Here, uncertainty is in vase position



Safety margins now emerge (naturally)



0.95 (E) N 146 0.9 0.85 0.8 0.85 0.8 -0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 Robot position: X_p (m)

At left: Color scale goes from 0 (blue) to near 100% (red).

At right: All poses with probability of success less that 80% are dark blue.

Generalized Approach

Markov model:

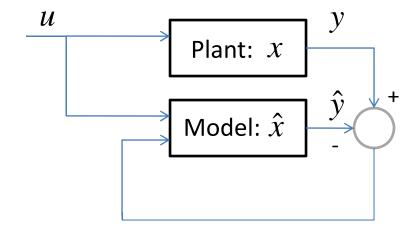
- Robot kinodynamics
- Environment

• Transition matrix:

- Depends on policy
- Time-to-failure metric (2nd eigenvalue)

Policy improvement:

- Improve low-level models
- Machine learning: iterate



As in much of control, differences between measured states, y, and expected states, \hat{y} , can be used (fed back) to update a model of the dynamics.

Potential Issues

- How sensitive are solutions to noise models?
 - For a particular task, overall probability varies
 - But resulting policy seems much less sensitive (?)
 - Relative magnitudes of uncertainty matter
- How do we estimate failure rates?
 - It may take too long to observe actual failures
 - Models must capture dominant failure modes

Brief aside: Service vs. Disservice

- The ultimate planning issues:
 - How will and should home robotics be used?
 - Planner capabilities must match applications
 - Toward enabling safe human-robot interaction
- What future applications are we enabling?
 Robots working with humans, not for them
 - Rehabilitation
 - Retuning sensory-motor capabilities
 (games and play with a purpose)

Conclusions

- Goal: Maximize probability of success
- Methods: Markov modeling
 - Include uncertainties in our modeled dynamics
 - Estimate and adjust transition probabilities online

Discussion

- A good approach? (What do humans optimize?)
- Why not? (Too challenging...)
- What are better alternatives???