Optimal Kinodynamic Planning for
Compliant Mobile Manipulators

Katie Byl
UC Santa Barbara



On
_Optimal Kinodynamic Planning for

Compliant Mobile Manipulators

Katie Byl
UC Santa Barbara



Overview

e What should be optimized

— Robots have stepped outside factory environments
— Challenges and goals in robotics have changed

e Scalar metrics and their estimation
— How to judge overall task performance
— How to estimate low-level performance

e Tools for policy improvement
— On-going challenges in machine learning



Overview

e What should be optimized : Reliability
— Robots have stepped outside factory environments
— Challenges and goals in robotics have changed

e Scalar metrics and their estimation
— How to judge overall task performance
— How to estimate low-level performance

e Tools for policy improvement
— On-going challenges in machine learning



Kinodynamic Planning

 Kinematics: geometric constraints
— feasible, and without collisions

* Dynamics: differential constraints
— velocity and torque limits

 Traditional optimization in robotics?

— minimum time solutions
Canny, Donald, Reif and Xavier (1988-1993)



Kinodynamic Planning

e For high-DOF robots (e.g., humanoids):
— Finding any feasible solutions is challenging
— Typically, such solutions are not optimal

Example:

e Rapidly-exploring Randomized Trees (RRTs)

— Sequential process:
e First, find feasible kinematic trajectories

 Then, ensure differential constraints (adjust speed)
LaValle and Kuffner (1998-2001)
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(Agree on) simple definitions:
What is success?
What are appropriate metrics?

How to accomplish these optimizations
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What are our planning goals?

(Agree on) simple definitions:
Optimal = maximizing probability of success

What is success?
Varies, to encompasses task-specific concepts

What are appropriate metrics?

Again, probability of success

How to accomplish these optimizations
Model low-level (Markov) transition probabilities



Why use such a broad goal...

e Success definitions vary (across applications):

— Optimizing probability can encompass anything

e Other metrics are indirect / imprecise / vague
— Example: a geometric “safety margin” is a proxy
— In stochastic models, exact safety margins emerge



Why use such a broad goal...

e Success definitions vary (across applications) :

— Optimizing probability can encompass anything

e Other metrics are indirect / imprecise / vague
— Example: a geometric “safety margin” is a proxy
— In stochastic models, exact safety margins emerge

e Stochasticity and underactuation dominate



Locomotion €< manipulation
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Locomotion €< manipulation

Shared challenges

* Mechanical impedance: Z(s) _F©)

— stiff / compliant } V(s)
— precise / adaptable | Tradeoffs

e Significant uncertainty and noise
— “mixing” effects cause perturbations to propagate

e Sensing the environment
— Visual and tactile; geometry and impedance

e Contact/ interactions difficult to model
— Rolling, sliding, deformations



Motivation

e Real humans sometimes fail:
Trip, fall, drop objects, bump into furniture...
...but usually recover.

e Same performance expectations for robots

A balance between risk and reward.



Toy Example




Toy Example

Two tasks:
1. Move and replace vase
2. Lower shelf

Assumed Known (for now):

e Geometry

e Dynamics of shelf:
spring-mass-damper
(shelf impedance)

Unknown:
e Mass of vase
(vase impedance)
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Toy Example

* Planner selects:
— Initial body pose

— Joint trajectories
— Variable torso height




Toy Example

e Planner selects:

— Initial body pose

— Joint trajectories
— Variable torso height

* No speed requirements
 Failure modes:

— Insufficient forces
— Infeasible kinematics




Toy Example

 Model variability in mass of vase
— Probability density function (PDF)
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Toy Example

Feasible 2D poses for invariant kinodynamic constraints
e Considering only known properties : DETERMINISTIC feasibility
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Toy Example

Kinematically feasible, with uncertainty in mass of vase
* Plot show probability of success : STOCHASTIC feasibility
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Toy Example

Kinematically feasible, with uncertainty in mass of vase
* Plot show probability of success : STOCHASTIC feasibility
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Toy Example

e Add some uncertainty in geometry, too
— Here, uncertainty is in vase position
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Reobaot height: z (m)

Toy Example

e Safety margins now emerge (naturally)
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Generalized Approach

e Markov model: u y

— Robot kinodynamics Plant: X
— Environment

Model: X l

* Transition matrix:
— Depends on policy

— Time-to-failure metric

nd 4
(2 E|genva|ue) As in much of control,

o o . differences between
° POIICV lmprovement. measured states, Y, and
— Improve low-level models expected states, Y, can be
— Machine learning: iterate used (fed back) to update

a model of the dynamics.



Potential Issues

How sensitive are solutions to noise models?
— For a particular task, overall probability varies

— But resulting policy seems much less sensitive (?)
— Relative magnitudes of uncertainty matter

How do we estimate failure rates?
— |t may take too long to observe actual failures
— Models must capture dominant failure modes



Brief aside: Service vs. Disservice

 The ultimate planning issues:

— How will and should home robotics be used?
e Planner capabilities must match applications

— Toward enabling safe human-robot interaction

 What future applications are we enabling?
Robots working with humans, not for them

— Rehabilitation
— Retuning sensory-motor capabilities
(games and play — with a purpose)



Conclusions

Goal: Maximize probability of success

Methods: Markov modeling
— Include uncertainties in our modeled dynamics
— Estimate and adjust transition probabilities online

Discussion

A good approach? (What do humans optimize?)
Why not? (Too challenging...)
What are better alternatives???



