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Abstract— Recognizing and manipulating objects is an im-
portant task for mobile robots performing useful services in
everyday environments. While existing techniques for object
recognition related to manipulation provide very good results
even for noisy and incomplete data, they are typically trained
using data generated in an offline process. As a result, they do
not enable a robot to acquire new object models as it operates
in an environment. In this paper, we develop an approach
to building 3D models of unknown objects based on a depth
camera observing the robot’s hand while moving an object. The
approach integrates both shape and appearance information into
an articulated ICP approach to track the robot’s manipulator
and the object. Objects are modeled by sets of surfels, which are
small patches providing occlusion and appearance information.
Experiments show that our approach provides very good 3D
models even when the object is highly symmetric and lacking
visual features and the manipulator motion is noisy.

I. INTRODUCTION

The ability to recognize and manipulate objects is an
important task for mobile robots performing useful services in
everyday environments. Over the last years, various research
groups have made substantial progress in recognition and
manipulation of everyday objects [20, 5, 2, 4, 12, 19, 8]. While
the developed techniques are often able to deal with noisy data
and incomplete models, they still have limitations with respect
to their usability in long term robot deployments in realistic
environments. One crucial limitation is due to the fact that the
parameters of the object recognition algorithms are either set
manually or trained using offline machine learning techniques.
As a result, there is no provision for enabling a robot to
autonomously acquire new object models as it operates in an
environment. This is an important limitation, since no matter
how extensive the training data, a robot might always be
confronted with a novel object (type) when operating in an
unknown environment.

The goal of our work is to develop techniques that enable
robots to autonomously acquire models of unknown objects.
Ultimately, such a capability will allow robots to actively
investigate their environments and learn about objects in an
incremental way, adding more and more knowledge over time.
In addition to shape and appearance information, object mod-
els could contain information such as the weight, type, typical
location, or grasp properties of the object. Equipped with
these techniques, robots can become experts in their respective
environments and share information with other robots, thereby
allowing for rapid progress in robotic capabilities.
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Fig. 1. Experimental setup. We used a WAM arm with BarrettHand on a
Segway base. Mounted next to the arm on a pan-tilt unit is a depth camera.

In this paper, we present a first step toward this goal.
Specifically, we develop an approach to building a 3D surface
model of an unknown object based on data collected by a
depth camera observing the robot’s hand moving the object.
In contrast to existing work in 3D object modeling [16, 6],
our approach does not require a highly accurate depth sensor
or a static or unobstructed view of the object. Neither does
our approach require an extremely precise manipulator as in
existing work on using robots to model objects [11]. This point
is essential because our manipulator can experience multiple
cm errors caused by cable stretch. It is also an important
feature if such techniques are to be used in robots priced for
consumer use.

We develop a Kalman filter that uses depth and visual in-
formation to track the configuration of the robot’s manipulator
along with the object in the robot’s hand. By doing so, our
approach can compensate for noise in the manipulator’s joint
sensors and provide an accurate estimate for the trajectory
of the object. Over time, an increasingly complete 3D model
of the object is generated by extracting points from each
depth scan and aligning them according to the tracked hand
and object position. The approach integrates the scans into
a consistent surface model using surfels, small discs which
represent local surface patches [9, 25]. Experiments show that
our approach can generate good models even for objects that
are highly symmetric, such as coffee cups, and objects lacking
visual texture.

Our work provides the following contributions. We develop
a Kalman filter based framework for tracking a robot ma-
nipulator and an unknown object grasped by the hand. We
show how a 3D model of the object can be generated as
part of the tracking algorithm. We develop a novel version
of articulated ICP that incorporates uncertainty estimates from
the Kalman filter, correspondences from visual feature match-
ing, and occlusion information from the surfel model. Finally,
we demonstrate our first results with an end-to-end system,
capable of grasping unknown objects, acquiring a model of
the object, and placing it back on a table. We also show that



Fig. 2. (left) A Barrett Hand holding a box. (right) Rendering of the depth
map provided by our depth camera.

our technique is capable of resuming modeling after the object
is placed down and regrasped.

This paper is organized as follows. In the next section,
we first describe our Kalman filter approach to tracking a
robot’s manipulator and an object grasped by the hand. We
then introduce an extension to articulated ICP to smoothly in-
corporate it into our tracking approach. We then go into detail
on the modeling process in Section III. Then, in Section IV, we
discuss related work, followed by experimental results. Finally,
we conclude in Section VI.

II. JOINT MANIPULATOR AND OBJECT TRACKING
Our goal is to acquire 3D models of objects grasped by

a robot’s manipulator. To do so, we assume that the robot
is equipped with a 3D depth sensor that observes the robot’s
manipulation space, producing 3D, colored point-clouds of the
robot’s manipulator and the object grasped by the hand. Fig. 2
shows an example image along with depth information of a
BarrettHand holding a box. To use such a point cloud for
tracking, we assume that the robot has a 3D model of its
manipulator. Such a model can either be generated from design
drawings or measured in an off line process. The 3D model
allows us to generate an expected point cloud measurement for
any configuration of the manipulator. In our current system, we
use a one-time ray-casting on an existing model of the WAM
Arm and BarrettHand included with OpenRAVE. In the future,
we plan to investigate techniques similar to Sturm et al. [21]
to instead learn these models.

A. Kalman Filter Tracking and Object Generation
We use a Kalman filter to track three components in the

state vector µ = 〈θ̂, T̂calib, T̂obj〉:
• The manipulator joint angles θ̂.
• The transformation T̂calib, representing an adjustment to

the initial robot to camera calibration, which transforms
the base of the manipulator into the 3D sensor frame.

• The transformation T̂obj , representing an adjustment to
the location of the object relative to the palm of the hand.
It transforms the object point cloud into the reference
frame of the palm.

The adjustment transformations T̂calib and T̂obj are initial-
ized to identity transformations and are encoded as quaternions
and translations. The initial state of the Kalman filter has asso-
ciated with it a covariance matrix representing the uncertainties
in the initial angles, the camera calibration, and the placement
of the palm relative to the first object point-cloud.

1: Hand object tracker(µk−1,Σk−1,Sm,Sobj ,Pz , θ̃k, θ̃k−1):

2: uk = θ̃k − θ̃k−1

3: µ̄k = µk−1 + Buk

4: Σ̄k = Σk−1 + Rk

5: µ̂k = Articulated ICP
(
Sm,Sobj ,Pz , µ̄k, Σ̄k

)

6: S′obj = Segment and merge object
(
Sm,Sobj ,Pz , µ̂k

)

7: Kk = Σ̄k + (Σ̄k + Qk)−1

8: µk = µ̄k + Kk(µ̂k − µ̄k)

9: Σk = (I −Kk)Σ̄k

10: return µk,Σk,S′obj

TABLE I
KALMAN FILTER FOR JOINT MANIPULATOR AND OBJECT TRACKING.

The algorithm, shown in Table I, takes as input µk−1 and
Σk−1, the previous time mean and covariance. Additionally,
Sm and Sobj are surfel clouds representing the manipulator
and the object respectively. As we will explain in more detail
below, surfels describe small patches on the surface of an
object, thereby providing more information than pure point
clouds. Initially, Sobj is empty since no model of the object
is available. θ̃k and θ̃k−1 are the joint angles reported by the
encoders of the manipulator.

As given in Step 2, the motion update uk is based upon the
difference in reported joint angles since the previous timestep.
The prediction step of the Kalman filter then generates the
predicted state µ̄k in Step 3. The matrix B simply projects
the joint angle update into the higher dimensional space of the
Kalman filter state. Associated with this update step is noise in
the motion distributed according to the covariance matrix Rk

(Step 4). If the calibration and the object’s position relative to
the palm are assumed fixed (that is, if the object is grasped
firmly), then Rk will not contribute any new uncertainty to
those parts of the state. Alternatively, one may include those
terms in Rk in order to compensate for movement of the
camera or the object inside the hand.

In Step 5, the function Articulated ICP matches the surfel
models of the manipulator and object into the observed point
cloud and returns an estimate, µ̂k, of the state vector that
minimizes the mis-match between these clouds. Details of this
algorithm are given in Section II-B.

Segment and merge object uses the output of Articu-
lated ICP to extract points from the current measurement, Pz ,
that belong to the object. To do so, it uses the ICP result µ̂k to
appropriately transform the manipulator surfel model Sm into
the correct joint angles and into the sensor’s reference frame.
Sm is then used to identify points in Pz generated by the
manipulator via simple distance checking. After segmenting
the remaining points in Pz (which can be done by computing
connected components over the image grid, similar to [7]), the
points belonging to the object in hand can be identified due to
their physical relation to the end effector. This technique has
the added benefit that it does not require a static background
as many vision-based algorithms do. The resulting points are



then integrated into Sobj with update rules we will describe
in Section III.

Steps 7 through 9 are standard Kalman filter correction
steps, where we take advantage of the fact that Articulated ICP
already generates an estimate of the state, µ̂k, thereby al-
lowing the simplified correction in Step 8. Qk represents
the uncertainty in the ICP result µ̂k. While techniques do
exist for estimating this matrix (e.g. by using the Jacobian
matrix of the error function), their estimates are based on the
local neighborhood of the solution. If ICP finds only a local
optimum, such estimates could drastically underestimate the
degree to which the ICP solution is off. We therefore decided
to set Qk by hand.

B. Articulated ICP

We now describe the function Articulated ICP used in Step
5 of the tracking algorithm. We begin with a review of the ICP
algorithm for rigid objects. The input to ICP are two 3D point-
clouds, Ps =

{
p1

s, . . . , p
M
s

}
and Pt =

{
p1

t , . . . , p
N
t

}
. The goal

is to find a transformation T ∗ (3D rotation and translation)
which aligns the point-clouds as follows:

T ∗ = argmin
T

M∑

i=1

min
pj

t∈Pt

wi

∣∣∣T (pi
s)− pj

t

∣∣∣
2

(1)

To achieve this minimization, the ICP algorithm iterates
between the inner minimization of finding correspondences
and the outer minimization of finding the transformation
minimizing the sum of squared residuals given the correspon-
dences. Since ICP only converges to a local minimum, a good
initialization for T is important.

In our context, Ps is a combined model of the manipulator
and object, and Pt contains the current observation. As in [18,
15], the point clouds in our articulated ICP are related to ob-
jects that consist of multiple links connected via revolutionary
joints. Specifically, each point pi

s ∈ Ps has associated to it a
link li in the robot’s manipulator and is specified in the local
coordinate system of that link. Given the set of joint angles,
θ, each link li in the robot model has a unique transformation
TW

i that maps its points into the reference frame of the depth
sensor. The object is treated as its own link, which has an
offset Tobj from the palm frame. The goal of articulated ICP
is to solve for the following:

〈θ, Tcalib, Tobj〉∗ = argmin
〈θ,Tcalib,Tobj〉

(2)

M∑

i=1

min
pj

t∈Pt

wi

∣∣∣TW
i (〈θ, Tcalib, Tobj〉)(pi

s)− pj
t

∣∣∣
2

We have found that the use of point-to-plane type error
functions [3], correspondence weights based on agreement of
normals, and correspondence distance thresholds can help the
performance of articulated ICP. Using point-to-plane requires a
non-linear optimizer, for which we use Levenberg-Marquardt.
To efficiently compute the normals of the target cloud, we use
local neighborhoods provided by the grid-structure of the data.

Fig. 3. Two grasps of the same object. With just a single grasp, the resulting
object model will have holes. Between the two grasps, the entirety of the
object is visible.

We compute the correspondence for a surfel using a KD-tree
of the point cloud from the depth sensor. As in [25], another
option is to simply project each surfel into the image plane and
performing bilinear interpolation on the grid structure of the
cloud to select corresponding points and normals. While faster,
this approach struggles with long, thin objects that may be very
close in physical space but do not overlap when projected into
the image plane.

For each frame, we extract SIFT keypoints and match them
into a cloud of previously seen keypoints on the object. We
use RANSAC to ensure geometric consistency and then add
these matches as fixed correspondences into our ICP error
function. For these feature points, we use a point-to-point
error function rather than point-to-plane because it provides
a stronger constraint. When, for example, the view of the
object consists entirely of a planar surface, the addition of
SIFT features as point-to-point matches provides the necessary
information to perform the correct within-plane sliding.

We found it beneficial to bias ICP toward the predicted
estimate provided by the Kalman filter. For this, we introduce
the Kalman filter state into ICP by adding an additional term
to Equation 2 that reflects the state of the Kalman filter:
(x−µ)T Σ−1(x−µ). This bias term is particularly important
when there exist ambiguities in the degrees of freedom to
adjust due to occlusion or limited field of view. This approach
automatically gives preference to adjusting degrees of freedom
with higher uncertainty. For example, if the object pose within
the hand is fairly certain, matches on the object will result in
adjusting the arm pose rather than the object transformation.
As a result, holding an object in the hand can actually improve
the estimate of the arm pose. It should also be noted that
adding this prior has the potential to affect the performance
of the Kalman filter. µ̂k is supposed to be an independent
estimate of the true state, but our prior biases it toward the
existing µ̄k.

C. Handling Multiple Grasps

We have so far assumed that modeling begins with the
object in the manipulator, and at no time is it let go. In
Section V-C we will discuss how to achieve this first grasp,
but there is another issue as well. The robot’s manipulator
will occlude parts of the object as shown in Fig. 3, so to
get complete models, our algorithm must be able to handle
changes in grasp location.



Fig. 4. One of the error modes of our depth sensor. Depicted here is a point
cloud of the lip of a mug against a light blue background. Along both edges
shown, extra depth points appear and are colored by the scene’s background.
Additionally, the sensor has quantization errors and tends to fill in small holes.

An advantage of performing the object modeling using a
robot is that the we have knowledge of when it will grasp
or release. We use this knowledge to divide our tracking and
modeling algorithm shown in Table I in to stages. These stages
are: i) the typical object examination stage where the object
is being manipulated away from the table’s surface; ii) raising
the object from or lowering the object to the table; iii) grasping
or releasing; and iv) object on the table.

Stage i is the only stage in which line 6,
Segment and merge object, is performed. During this
stage, there is a strong prior on the object remaining fixed
within the manipulator. The object is transformed according
the the transformation for the palm link, and the special object
link is interpreted as an adjustment to that transformation.
Stage ii proceeds exactly as stage i except that the model
update is not performed because object segmentation becomes
more difficult with other objects in close proximity. Stage
iii is treated the same as stage ii except that the prior on
object pose is loosened. When the robot grasps or releases an
object, the object may move relative to the manipulator. Also
possible is that the grasp may fail, and the object could drop.
We do not yet address this type of event, but it is clearly a
distinct possibility and one worth planning for.

Stage iv is different in that the object is not expected to
move with the manipulator. The prior is for the object to
remain fixed relative to the robot’s base. The object pose is not
changed as the manipulator moves, and the pose adjustment
term is reinterpreted to mean an adjustment relative to the
robot’s base, not to the manipulator. The combination of these
four stages allows the robot to examine an object using one
grasp, put the object down, regrasp it, and examine it again,
thereby filling in holes from the first grasp. In Section V, we
demonstrate an example of a model built from multiple grasps.

III. OBJECT MODELING

We now describe the representation underlying our object
models and the key steps involved in updating object models
based on new data.

A. Surfels

Our choice of surfels [9, 25] as a representation was strongly
influenced by the constraints of our problem. Our depth sensor,
while versatile, does suffer from certain types of noise. In
particular, we must be able to compensate for quantization

errors, filling in of holes, and expansion of objects by extra
pixels. An example is shown in Fig. 4. Therefore, it is crucial
that we be able to revise the models not just by adding points
but also by keeping running estimates of their locations and
by removing spurious points.

Additionally, the problem at hand involves tracking the
robot’s manipulator, some of which may be occluded by the
object or itself. We wish to be able to reason explicitly about
the visibility of any particular point in Sm or Sobj before as-
signing it a correspondence. In doing so, we prevent irrelevant
model points from negatively impacting the alignment.

Surfels fit all of these requirements and are very easy to
work with. As we explain below, the addition, update, and
removal rules for surfels are quite simple and robust. While
other representations such as triangle meshes could provide
the occlusion information we need, the update rules can be
substantially more inefficient because of the need to maintain
explicit connections with other vertices. Surfels, on the other
hand, can be updated independently of each other and if
desired can be later converted to a mesh in a post-processing
step.

A surfel is essentially a circular surface patch. The prop-
erties of a surfel si include its position, pi, its normal, ni,
and its radius, ri. The radius, as described in [25], is set such
that as viewed from the camera position, it would fill up the
area of one pixel. As the camera gets closer to the surface,
surfels are automatically resized, providing an elegant means
for selecting the appropriate resolution, and further, for using
varying levels of detail across a single surface.

One can associate additional attributes to surfels such as
“visibility confidence” ci. The possible viewing angles of a
surfel are divided into 64 bins. The confidence is the number
of such bins from which the surfel has been seen at least once.
This provides a better measure of confidence than simply the
number of frames in which a surfel has been seen because a
patch seen from the same angle may consistently produce the
same faulty reading. For visualization purposes, we also keep
track of the color of the surfel using the frame that has the
most perpendicular viewing angle onto the surfel.

B. Model update
After performing the segmentation described in Section II,

we use surfel update rules similar to [25] to modify the object
model Sobj . Each surfel location pi is projected into the image
plane. We then use bilinear interpolation to determine the point
p∗i and normal n∗i at that same location in the sensor reading.
pi has a depth di and p∗i has a depth d∗i ; the difference di−d∗i is
used to determine the update rule that is used. In the following
rules, we will say that a sensor reading p∗i is a valid object
reading if its surrounding pixels are in a single object segment,
and n∗i does not deviate from the camera direction by more
than θmax.

1) |di − d∗i | ≤ dmax: If p∗i is a valid object reading and
ni does not deviate from the camera direction by more
than θmax, then the surfel is updated. This is done
by computing running averages of the surfel location



and normal and updating the grid of viewing directions.
Additionally, if the new measurement was taken from a
closer location, then the radius of the surfel is updated
accordingly. If the conditions do not hold, then we do
nothing.

2) di − d∗i < −dmax: In this case, the observed point is
behind the surfel. If the surfel confidence ci is below
chigh, then the existing surfel is considered an outlier
and removed. It is replaced by a new one at p∗i if that
is a valid object reading. If ci is at least chigh, then the
reading is considered an outlier and is ignored.

3) di − d∗i > dmax: Then the observed point is in front
of the model surfel si. As suggested by [25] we look
to find a surfel that occludes si. If we find one and its
confidence is at least chigh and ci is below chigh, then
si is removed. This is meant to remove surfels that have
been erroneously placed in the interior of an object. If
no occluding surfel is found, we do nothing.

After surfel update comes the surfel addition step. For each
pixel in the object segments, a new surfel is added if there are
no existing surfels with normals toward the camera either in
front of or close behind the reading. This is a simple heuristic;
however, it allows us to acquire models of objects which have
two surfaces close together such as the inside and outside of
a coffee mug. Finally, there is one more removal step. Any
surfel with ci < cstarve that has not been seen within the last
tstarve frames is removed. This is very effective at removing
erroneous surfels without the need to return to a viewing angle
capable of observing the surfel patch. More details on the
parameters in this approach and reasonable values for them
can be found in [25].

IV. RELATED WORK

The existing work in tracking and modeling address subsets
of the problem we are trying to solve; however, no one paper
addresses them all. We make use of depth, visual, and encoder
information to provide a tracking and modeling solution for
enabling active object exploration for personal robotics.

A number of techniques exist for hand-tracking; however,
many of these make use of only 2D information such as
silhouettes and edge detections [1, 22]. Some require pre-
computed databases and may only detect configurations within
that database [1] and others are far from real-time algorithms.
Given that we are using 3D sensors and that we wish to track
the hand in real time through a continuous space of joint
angles, such approaches are unsuitable.

Articulated ICP has been used in tracking applications in
the past [18, 15]. However, to the best of our knowledge, it
has not been integrated with Kalman filters, which provide the
advantages of smoothing and estimating uncertainties. These
uncertainties are crucial as they can be fed back into ICP
to reflect the accumulated knowledge of the state. Building
models of held objects and utilizing them during ICP is also a
novel contribution of our algorithm and one which reinforces
the need for the Kalman filter.

Typically, object tracking algorithms only rely on the use of
visual data or depth data but not both, and to our knowledge
none explicitly try to track the hand as a means of improving
alignment. In the case of ProFORMA [17], the goal is to
acquire and track models via webcam. While visual features
alone work fine for some objects, many everyday objects lack
sufficient texture for this type of tracking. Additionally, Pro-
FORMA uses a different surface representation more suitable
to the sparse point clouds produced by structure from motion.

Weise et al. [25] use 3D range scans and model objects using
surfels [9] but rely solely on object ICP with projection-based
correspondences to provide alignment. They also demonstrate
a potentially very useful online loop-closure algorithm. Loop-
closure is an issue we have not addressed in this paper
but which we plan to implement as future work. This work
does not address the issue of hand tracking, an aspect which
improves robustness to object symmetries and lack of texture.

Kraft et al. [11] model contours of objects using a robotic
manipulator and a stereo camera. The representations they
learn, however, are not full surface models but rather sparse
sets of oriented 3D points along contours. Another important
difference is that the authors assume precise camera to robot
calibration and precisely known robot state at all times. We
believe these assumptions to be too restrictive for the technique
to be of any widespread use.

Also related is the work by Ude et al. on robotic object
recognition [24]. Their approach involves generating motion
sequences to achieve varied views of an object, segmenting
the object from images, and extracting training examples for a
vision-based classifier. Unlike Kraft’s work, this paper assumes
neither known camera calibration nor precisely known joint
angles. While they do not perform tracking or surface mod-
eling, their techniques for selecting arm motions may prove
useful for our goals as well.

For the graphics community, obtaining accurate 3D shapes
of objects is a primary research objective and has been exten-
sively studied. Many researchers have applied range sensing of
various kinds (e.g. [6, 16]) and can recover amazing details by
combining meticulous experimental setup with sophisticated
geometric inference algorithms, such as that in the Digital
Michelangelo Project [13]. In comparison, although we are
recovering both object shape and appearance, our objective
is not photorealistic rendering, but to robustly and efficiently
model objects from an autonomous robot, with an affordable
sensor, and to apply such object knowledge in recognition and
manipulation.

V. EXPERIMENTS

The robot used in our experiments is shown in Fig. 1.
The basic setup consists of a WAM Arm and BarrettHand
mounted on a Segway. The depth camera is located to the
side and above the robot manipulator so as to provide a good
view of the manipulator workspace. The specific depth camera
we use was mainly developed for gaming and entertainment
applications. It provides pixel colors and depth values at
640x480 resolution, at 30 frames per second.



Fig. 5. Distance of the end effector from the ground truth as a function of
the per joint angle drift rate. Notice that the tracking error does not increase
with noise until at least 2.4 ◦/

√
s, and when modeling the object, failures do

not begin until 3.4 ◦/
√

s.

We collected depth camera data and joint angle sequences
of the moving system. In all but the last experiments, the
manipulator grasps and trajectories were specified manually
and the objects were grasped only once. Techniques like those
described by Ude et al. [24] may be useful for automatic
generation of optimized motion trajectories. Using multiple
grasps to generate complete object models is discussed briefly
in Section V-C.

Our current implementation of the algorithm described in
Section II-A runs at 1 to 2 frames per second. We are confident
that the update rate of the system can be increased to 10 frames
per second using a more optimized implementation and taking
advantage of GPU hardware. To simulate such a higher update
rate, we played back the datasets at approximately one fifth
of the real time. We have found that by skipping frames, we
are able to operate in real time, but the resulting models are
not as detailed.

A. Joint Manipulator and Object Tracking

In this experiment, we evaluate the ability of our technique
to track the position of the robot hand. Specifically, we
investigate if our system would enable accurate tracking of
a low cost manipulator equipped with position feedback far
less accurate than that of the WAM arm. To do so, we
use the WAM controller’s reported angles as ground truth.
Though these angles are far from perfect, they provide a
common comparison point for the different noise settings.
To simulate an arm with greater inaccuracies, we included
normally distributed additive noise of varying magnitude.

To provide an intuitive feel for the units involved, we
show in Fig. 6 an example of the deviation between reported
and observed manipulator after 20 seconds of motion at a
2.0 ◦/

√
s noise level. In Fig. 5, we demonstrate that our

tracking algorithm can handle large amounts of noise in the
reported angles without losing accuracy in tracking the end
effector. In this experiment, the hand was grasping a coffee

Fig. 6. (left) Drift resulting from 2.0 ◦/
√

s noise. Actual sensor data in
true color, tracking result in red, and noisy joint angles in blue. (right) Surfel
model produced at this level of noise.

Fig. 7. Shown here are a can and a mug aligned with ICP alone on the left
and our algorithm on the right. Due to the high level of symmetry in these
objects, ICP is unable to find the correct alignments between depth scans,
resulting in useless object models.

mug. Red dots in Fig. 5 show errors for the uncorrected,
noisy pose estimates. Green dots, along with 95% confidence
intervals, show tracking results when ignoring the object in
the robot’s hand. Blue dots are results for our joint tracking
approach, when modeling the object and tracking it along
with the manipulator. Each dot represents the end effector
positioning error at the end of the tracking sequence, averaged
over multiple runs and multiple arm motions. As can be
seen, modeling the object further increases the robustness to
noise. This is because we can both explicitly reason about the
modeled object occluding the fingers and use the object as an
additional surface to match.

An example model generated for the coffee mug under high
noise conditions is shown in Fig. 6. When comparing this
model to one built without additional noise (see Fig. 7), it
becomes apparent that our approach successfully compensates
for motion noise. We have also begun experiments on ignoring
encoders entirely and adding inaccuracies to the kinematic
model. Initial tests suggest robustness to these factors as well,
but a more thorough evaluation is needed.

B. Object Modeling
In this set of experiments we investigate different aspects

of the tracking and object modeling technique.
Many objects in everyday environments exhibit rotational

symmetries or are lacking in distinctive geometries for match-
ing. Many existing object modeling algorithms such as [25]
rely on being able to geometrically match the object model into
the new frame. To demonstrate the advantage of also tracking
the manipulator, we show in Fig. 7 how object ICP alone



Fig. 8. Comparison between aggregated point clouds and surfel models
generated from the same data and the same frame alignments.

performs on two highly symmetric objects.
In this experiment, object segmentations from the joint ICP

were used to produce clouds to be registered, but ICP was
left to align the object points without any information about
the hand motion. As can be seen in Fig. 7, ICP is unable to
recover the proper transformations because of the ambiguity
in surface matching. It should also be noted that for the mug
case in particular, systems like ProFORMA [17], which rely
on tracking visual features would also be incapable of tracking
or modeling the object.

We have also found that surfels are a very compact and
elegant solution to maintaining object models. Besides the
benefits of occlusion-checking and incremental update, multi-
ple measurements can be merged into a single surfel, and the
arrangement is cleaner and more visually appealing.

Fig. 8 illustrates the difference between raw data point
clouds and surfel models. Shown on the right are the surfel
patches belonging to two separate objects. The two panels
on the left show the raw, colored point clouds from which
the surfels were generated. The raw clouds contained on the
order of one million points and were randomly downsampled
for visualization purposes. The surfel clouds contain on the
order of ten thousand surfels.

The surfel models we have obtained in our online process
contain accurate information of both surface positions and
normals, and can be readily used in a post-processing step,
through meshing and coloring, to improve the qualities of the
shape and visual appearance. We use the open-source Meshlab
software and follow a number of standard steps: first we apply
the Poisson Reconstruction algorithm [10], with a level of 12,
to obtain a surface mesh from the oriented point cloud. Second,
we apply the Catmull-Clark subdivision to refine the mesh.
Third, we reproject the oriented points to the original frames,
and assign vertex colors there. We use the frame that has the
most frontal view of a particular vertex, unless it fails to pass
a simple color saturation threshold check.

Fig. 9. Triangulated surface models constructed from surfel clouds. On the
top is a Matlab box and on the bottom a stuffed doll. Any large holes are due
to occlusion by the hand.

Fig. 10. (left) A model of a can constructed using only the first grasp from
Fig. 3. Notice the large holes where the hand occludes the view. (right) The
same model after the second grasp.

A few of the reconstructed objects are shown in Fig. 9.
For rendered videos of the models and videos demonstrating
the arm tracking and surfel model construction, see www.
youtube.com/UWObjectModeling.

C. Toward Autonomous Object Modeling
To perform autonomous grasping and modeling, we im-

plemented an approach that enables the robot to pick up an
unknown object. The object grasp point and approach direction
are determined by first subtracting the object from the table
plane using the depth camera data, and then computing the
principal component of the point cloud representing the object.
The approach is then performed orthogonal to this principal
component. While this technique is not intended as a general
grasping approach, it worked well enough to perform our
initial experiments. Alternatively, one can use local visual or
geometric features as in [20] to obtain this first grasp.

The model can be improved by allowing the robot to place
the object back down and regrasp it. We demonstrate this
in Fig. 10. While Section II details how the tracking and
modeling can be made to work with regrasping, the best way
to generate the second grasp is still unclear. Although the first
grasp must be made heuristically due to lack of knowledge
about the object, the second grasp can be informed by the
mostly complete surfel model. The model can be passed along
to a grasp planner (e.g. [2, 14]) but should be done in a
way that discourages grasps covering previously unseen areas.



One option is to incorporate into the grasp quality metric an
estimate of the area of overlap between the two grasps.

VI. CONCLUSIONS AND FUTURE WORKS
We developed an algorithm for tracking robotic manipula-

tors and modeling grasped objects using depth cameras. Our
approach performs tracking, robot to sensor calibration, and
object modeling all in one Kalman filter based framework.
Experiments show that the technique can robustly track a
manipulator even when significant noise is imposed on the po-
sition feedback provided by the manipulator. The experiments
also show that jointly tracking the hand and the object grasped
by the hand further increases the robustness of the approach.
The insight behind this technique is that even though an object
might occlude the robot hand, the object itself can serve as
guidance for the pose estimate.

We also introduced a tight integration of the tracking
algorithm and an object modeling approach. Our technique
uses the Kalman filter estimate to initially locate the object
and to incorporate new observations into the object model.
We use surfels as the key representation underlying the object
and manipulator models. This way, our approach can do
occlusion-based outlier rejection and adapt the resolution of
the representation to the quality of the available data.

An approach alternative to ours could be to generate an
object model by moving a camera around the object. However,
this approach cannot provide information about object parts
that are not visible based on the object’s position in the
environment. Furthermore, our approach of investigating an
object in the robot’s hand also lends itself to extracting
information about the object’s weight and surface properties.

Our key motivation for this work is in enabling robots to
actively investigate objects in order to acquire rich models for
future use. Toward this goal, several open research questions
need to be addressed. We have discussed possible techniques
for initial and subsequent grasp generation, but these problems
remain as future work. There is also the problem of automatic
trajectory generation for quick coverage of the object. Further-
more, the overall spatial and visual consistency of objects can
be further improved by adding loop closure techniques, similar
to SLAM mapping [23]. Finally, by attaching visual features
and grasp information to our object models, a robot could use
such models to quickly detect them in the environment using
a technique similar to the work of Collet et al. [5] and grasp
the objects again.
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