

Active Perception for Mobile Manipulation

Tamim Asfour

Humanoids and Intelligence Systems Lab (Prof. Dillmann)

INSTITUTE FOR ANTHROPOMATICS, DEPARTMENT OF INFORMATICS

http://his.anthropomatik.kit.edu

http://his.anthropomatik.kit.edu/english/65.php

Three key questions

- Grasping and manipulation in human-centered and open-ended environments
- Learning through observation of humans and imitation of human actions
- Interaction and natural communication

© SFB 588, Karlsruhe

Interactive tasks in the Robo-KITchen

- Object recognition and localization
- Vision-based grasping
- Hybrid position/force control
- Vision-based selflocalisation
- Collision-free navigation
- Combining force and vision for opening and closing door tasks
- Learning new objects, persons and words
- Audio-visual user tracking and localization
- Multimodal humanrobot dialogs
- Speech recognition for continuous speech

[Humanoids 2006, IROS 2006, IROS 2007, RAS 2008, Humanoids 2008, Humanoids 2009]

Bimanual grasping and manipulation

- Stereovision for object recognition and localization
- Visual Servoing for dual-hand grasping
- Zero-force control for teaching of grasp poses

Humanoids 2009

Tightly coupled dual-arm tasks

Pushing for grasping and pre-grasp manipulation

- Flat objects on the table are difficult to grasp → Pre-grasp manipulation to adjust the object before final grasping
- Learning actions on objects

Joint work with Damir Omrcen and Ales Ude; (Humanoids 2009)

Joint work with Lillian Chang and Nancy Pollard (CMU), Humanoids 2010

Pushing for grasping

- Object independent pushing (generalization across objects).
- Learning relationship between point and angle of push and the actual movement of an object
- Direct association between the binarized object image and the response of the object with respect to the applied pushing action.
- Use the knowledge in order to find the appropriate point and angle of push in order to bring an object to a goal

Joint work with Damir Omrcen and Ales Ude; (Humanoids 2009)

Workshop Motion Planning on Monday:

Grasp and motion planning

Today: Mobile manipulation workshop

Active Perception for autonomous knowledge acquisition

Limitations and shortcuts

Objects

- Complete model knowledge (shape, color, texture)
- Only visual object representation is used

- How to learn objects representations?
- **...**

- Kinematic-based approaches as place holders for learned primitive actions
- How to learn new actions?
- How to adapt actions to new situations?
- How to chain different actions to achieve complex tasks?
- How to learn associations between objects and actions?
- How to learn consequence of action?
- ...

Object-Action Complexes (www.paco-plus.org)

Objects and Actions are inseparably intertwined

- Visually based object recognition fails
- Visual information is sparse and limited
- Activity involving the object decreases the uncertainty about the object's nature considerably!

CMU Graphics Lab Motion Capture Database http://mocap.cs.cmu.edu/

Intuitions on Object-Action Complexes

- Affordances (J.J. Gibson)
 - Objects affords actions
- Object-Action Complexes (OACs)
 - Actions define the meaning of Objects and
 - Objects suggest Actions
- OACs are associations of objects and affordances
 - Affordances can be expressed by STRIPS rules comprising:
 - Preconditions and
 - Deletions/additions

How to relax such limitations?

- Autonomous Exploration:
 - Visually-guided haptic exploration
 - Visual object search
- Coaching and Imitation
 - Learning from Observation
 - Goal-directed Imitation

Hand: available skills

Karlsruhe Institute of Technology

- Direct/Inverse Kinematics
- Position/force control [Humanoids 2009]
- Detection of contact and "objectness"
- Assessment of deformability and object size

Failed grasp "no object"

Precision grasps: Distance between fingertips

Power grasps:
Distance between
fingertips and palm

Tactile exploration using potential fields

- Potential field in operational space
 - Unknown regions \rightarrow attractive $\Phi_a < 0$
 - Known regions \rightarrow repellent $\Phi_r > 0$
- Dynamic adaptation of potential field configuration based on tactile response
- Superposition of individual potential sources

$$\Phi(x) = \sum_{i} \Phi_{r,i}(x) + \sum_{j} \Phi_{a,j}(x)$$

Generation of trajectories for the fingertips by gradient methods

$$F = -\nabla \phi(x)$$

Hand in details

- Potential field guides the robot hand along the object surface
- Oriented 3D point cloud from contact data
- Compute face pairings from 3D point
- Calculate grasping hypotheses using a geometric feature filter pipeline
 - Parallelism
 - Minimum face size
 - Face distance
 - Mutual visibility
- Evaluation of grasp qualities
- → Association between "objects" and actions (grasps) → symbolic grasps (grasp affordances)

Generation of grasp hypotheses

Haptic exploration on ARMAR

In simulation

- Physics extension for Open Inventor/VRML modeling of complex mechanical systems
- Modeling of virtual sensors
- VMC-based inverse kinematics

Haptics exploration on ARMAR

Haptic Exploration using ARMAR-III

Dexterous Tactile Exploration of Unknown Objects

Alexander Bierbaum, Tamim Asfour and Rüdiger Dillmann

Institute for Anthropomatics, Chair Prof. Dilimann Faculty of Computer Science

July 2010

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

www.kit.edu

- Generation of visual representations through manipulation
- Application of generated representations in recognition tasks and visual search tasks

Acquisition of multiple object views

Background-object and hand-object segmentation

Active visual search

- Generation of different views through manipulation
- Active search using perspective and foveal camera
- Integration of object hypotheses in an ego-centric representation (scene memory)

ICRA 2010 Humanoids 2009 ICRA 2009 **Noodles Search Orientation 1**

How to relax the limitations in our scenario?

- Autonomous Exploration
 - Visually-guided haptic exploration
 - Visual object search
- Coaching and Imitation
 - Learning from Observation
 - Goal-directed Imitation

Learning from human observation

Observation

Reproduction

Generalization

Stereo-based 3D Human Motion Capture (HMC)

Capture 3D human motion based on the image input from the cameras of the robot's head only

- Approach
 - Hierarchical Particle Filter framework
 - Localization of hands and head using color segmentation and stereo triangulation
 - Fusion of 3d positions and edge information
 - Half of the particles are sampled using inverse kinematics
- Features
 - Automatic Initialization
 - 30 fps real-time tracking on a 3 GHz CPU, 640x440 images
 - Smooth tracking of real 3d motion

Reproduction on ARMAR

- Tracking of human and object motion
- Visual servoing for grasping

Generalisation?

Action representation

- Hidden Markov Models (HMM)
 Humanoids 2006, IJHR 2008
 - Extract key points (KP) in the demonstration
 - Determine key points that are common in multiple demonstrations (common key points: CKP)
 - Reproduction through interpolation between CKPs
- Dynamic movement primitives (DMP) ICRA 2009, T-RO 2010
 - Ijspeert, Nakanishi & Schaal, 2002
 - Trajectory formulation using canonical systems of differential equations
 - Parameters are estimated using locally weighted regression
- Spline-based representations
 Humanoids 2007
 - fifth order splines that correspond to minimum jerk trajectories to encode the trajectories
 - Time normalize the example trajectories
 - Determine common knot points so that all example trajectories are properly approximated. Similar to via-point, key-points calculation.

Karlsruhe Institute of Technology

- Library of motor primitives
 - Markerless human motion tracking
 - Object tracking
- Action representation
 - Dynamic movement primitives for generating discrete movements
 - Adaptation of dynamic systems to allow sequencing of movement primitives
 - Associating semantic information with DMPs
 - → sequencing of movement primitives
 - → Planning

Learning from Observation

- Periodic movements (Wiping)
 - Extract the frequency and learn the waveform.
 - Incremental regression for waveform learning
- Adaptation of the learned movement to maintain contact with different surfaces, based on force-feedback.

Joint work with Andrej Gams and Ales Ude, Humanoids 2010

API of the ARMARs

- Robot interface (API) allows access to the robot's sensors and actors via C++ variables and method calls
- Skills: implemented atomic capabilities of the robot
 - SearchForObject
 - Grasp
 - Place
 - HandOver
 - Open/Close door
 - **...**
- Tasks: combination of several skills for a specific purpose
 - Bring object from ...
 - Put object on
 - Stack objects
 - **..**.

Connecting High-level Task Planning to Execution

Goal state: blue cup (obj2) stacked on the green cup (obj1)

PKS planner (STRIPS-like planner)

Joint work with Ron Patrick and Mark Steedman, University of Edinburgh

Thanks

- Humanoids@KIT
 - Rüdiger Dillmann
 - Stefan Ulbrich
 - David Gonzalez
 - Manfred Kröhnert
 - Niko Vahrenkamp
 - Julian Schill
 - Kai Welke
 - Ömer Terlemez
 - Alex Bierbaum
 - Martin Do
 - Markus Przybylski
 - Tamim Asfour
 - Pedram Azad (not in the picture)
 - Paul Holz (not in the picture)
 - Ioana Gheta (not in the picture)
 - Christian Böge (not in the picture)
 - Sebastian Schulz (not in the picture)
 - Isabelle Wappler

Thank you ...

... for your attention

- Thanks to the funding agencies
 - German Research Foundation (DFG)
 - SFB 588 www.sfb588.uni-karlsruhe.de

Deutsche Forschungsgemeinschaft **DFG**

- European Commission
 - Xperience www.xperience.org
 - GRASP www.grasp-project.eu
 - PACO-PLUS www.paco-plus.org

