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Grasp planning

Novel object grasps
[Hsiao et al., IROS 2010]

Known object grasps
precomputed using GraspIt!



Bayesian Grasp Planning

• Consider multiple hypotheses for object shape/pose
• Generate pool of grasps planned on all possible object 

representations
• Evaluate grasps using multiple grasp evaluators

 Each decides how well a grasp would work on one 
or more object hypotheses

• Estimate overall probability of success for each grasp



Predicting Grasp Success

Probability of grasp success for a single grasp (g) given the 
grasp evaluation (E) and object detection (D) results

Assumptions:

P(s|E,D,o) does not depend on D (because o is given)

P(o|E,D) does not depend on E (which are computed values 
based on different o)



Bayes Net Models

• Split into two pieces because we’re assuming P(o|E,D) 
does not depend on E  

• Further assumptions:
 Object detection results are independent
 Grasp evaluation results are independent
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Predicting Object Probabilities
• Naïve Bayes model for object representation probabilities
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Predicting Grasp Success

• Bayes Net model for predicting grasp success
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Current Implementation

• Object detectors: ICP-like detector for 
each object in database

• Grasp generators: 
 Precomputed GraspIt! grasps for each 

detected object
 Grasps planned by point cluster grasp 

planner

• Grasp evaluators:
 GraspIt! grasp testing
 Point cluster grasp planner evaluator



Conditional Distributions
Object detection GraspIt! energy metric

P(dj|oi), P(dj|¬oi) P(ek|s, oi), P(ek|f, oi)

Based on 892 point 
clouds of 44 objects

Based on 490 
recorded grasps 
of 30 objects



Bayesian Grasp Planner

• Object detectors generate list of object 
representations

• Grasp generators create pool of grasps to evaluate
• Grasp evaluators for each representation say how 

well each grasp would work on that representation
• Overall success probability estimated for each grasp



Grasp Quality Regression

• Explicit GraspIt! evaluation of arbitrary grasps too 
slow to evaluate hundreds of grasps

• Precomputed grasp database has dense sampling of 
good grasps—use regression to estimate grasp quality



Simulation Results: Database Objects

•Generated using 
250 real object 
scans (single-
object-on-table)

•Grasps are 
tested in GraspIt! 
on the ground-
truth object 
geometry



Simulation Results: Novel Objects

•Generated using 
the same 250 real 
object scans

•Object is taken 
out of the 
database 

•Grasps are 
tested in GraspIt! 
on the ground-
truth object 
geometry



PR2 Results

Collabo
rative 
Planner

Naïve 
Planner

Novel objects 22/25 18/25

Database objects 22/25 21/25

• Single object on table

• Success = lift and 
move to side without 
dropping



Bayesian Grasp Planning Summary

• Deals with uncertainty in object shape/pose
• Combines arbitrary number of object detection, 

grasp planning, and grasp evaluation algorithms
• Looks for consensus on how to grasp based on 

multiple representations of the sensor data
• Framework increases robustness to errors in 

object detection based on incomplete or noisy 
sensor data
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