Generality and Simple Hands

Matt Mason
ICRA 2011
Workshop on Mobile Manipulation
May 13, 2011

Joint work with Alberto Rodriguez, Siddhartha Srinivasa, Andres Vazquez

Can a robot hand be both simple and general?

- Assume:
 - Few actuators, e.g. one;
 - Few sensors;
 - Simple mechanisms;
 - Small, light, inexpensive.
- Could it ...
 - Pick parts from a bin?
 - Operate scissors?
 - Open a door?
 - Fold origami?

The Kraft Viper

Six simple but not general hands.

Sony SMART Cell

• In examples, complexity correlates with generality.

- In examples, complexity correlates with generality.
- Grasping involves conforming hand shape to given object shape. More freedoms implies greater variety of shapes.

- In examples, complexity correlates with generality.
- Grasping involves conforming hand shape to given object shape. More freedoms implies greater variety of shapes.
- In-hand manipulation of a rigid body the straightforward way requires nine actuators.

- In examples, complexity correlates with generality.
- Grasping involves conforming hand shape to given object shape. More freedoms implies greater variety of shapes.
- In-hand manipulation of a rigid body the straightforward way requires nine actuators.
- For haptic shape sensing, more sensors and more freedoms implies more data.

- In examples, complexity correlates with generality.
- Grasping involves conforming hand shape to given object shape. More freedoms implies greater variety of shapes.
- In-hand manipulation of a rigid body the straightforward way requires nine actuators.
- For haptic shape sensing, more sensors and more freedoms implies more data.
- Design constraints have consequences.

Second, the case for simple hands ...

da Vinci Surgical System Kanazawa University

Some simple but general hands.

- da Vinci surgery (and origami)
- human with prosthetic hook
- hardware pickup tool
- chopsticks
- roulette croupier
- underwater teleoperated grippers

Summarizing the case for simplicity.

- Humans, animals, teleoperators can do a lot with simple hands;
- Practical issues robustness, cost, weight, ...
- Scientific benefits.
- The gold standard for generality is a human with tools. Humans are adept with anthropomorphic and simple effectors.

Part II A toolomorphic manipulator

Part II A toolomorphic manipulator

Our inspiration: the pickup tool.

Pickup tool philosophy

Pickup tool philosophy

- Let the fingers fall where they may.
 - Instead of "put the fingers in the right place".

Pickup tool philosophy

- Let the fingers fall where they may.
 - Instead of "put the fingers in the right place".
- Grasp first, ask questions later.
 - Instead of knowing pose in advance, and avoiding object motion during grasp.

- Task: bin picking
 - High uncertainty; High clutter
 - Target rich environment

- Task: bin picking
 - High uncertainty; High clutter
 - Target rich environment
- Let the fingers fall where they may
 - Simple hand; Blind grasp

- Task: bin picking
 - High uncertainty; High clutter
 - Target rich environment
- Let the fingers fall where they may
 - Simple hand; Blind grasp
- Grasp first, ask questions later
 - Hope that object falls into stable pose
 - Simple recognition and localization
 - Offline learning of perception

Hand concept

Planar palm
Linear fingers
Single actuator
Compliant coupling
Joint angle encoders

Hard and slippery!

Hand concept

Planar palm
Linear fingers
Single actuator
Compliant coupling
Joint angle encoders

Hard and slippery!

Hard and slippery for perception and learning

Perception uses finger and motor encoders

Perception uses finger and motor encoders

• Grasp Classification

Perception uses finger and motor encoders

• Grasp Classification

Perception uses finger and motor encoders

• Grasp Classification

• In-hand Localization

Perception uses finger and motor encoders

• Grasp Classification

• In-hand Localization

The Implementation

Prototype I

- 3 fingers.
- Gear transmission.
- Torsional springs.

Prototype II

- 4 fingers.
- Linkage transmission.
- Elastic link in the linkage.
- Fully observable.

Grasp Signature

Grasp Signature

Experimental Setting

- Industrial manipulator.
- Preprogrammed grasp motion.
- State machine commands:
 - Robot
 - Gripper
 - Vision system
 - Logger
- 200 trials with each gripper.

Blind grasp statistics

# markers grasped	0	I	2	3	4
PI	57	83	43	17	0
	(28.5 %)	(41.5 %)	(21.5 %)	(8.5 %)	(0 %)
P2	37	84	49	27	3
	(18.5 %)	(42.0 %)	(24.5 %)	(13.5 %)	(1.5 %)

Typical "successful" blind grasps

Typical "successful" blind grasps

Results

Ground truth Good grasp Bad grasp Perception True **False** False True positive negative positive negative

Classifier statistics

- Accuracy: True / True + False
- Precision: True positives / Positives
- Recall: True positives / Good grasps

Accuracy

- Principle Component Analysis compression.
- Support Vector Machine classifier.

Accuracy

- Principle Component Analysis compression.
- Support Vector Machine classifier.

Grasp Recognition

Virtually eliminate false positives, while missing half of the good grasps.

In-Hand Localization

Reduce mean error to 8 degrees, but miss 2/3 of the good grasps.

In-Hand Localization

In-Hand Localization

Discussion

Discussion

• Design hand for perception. Design for learning.

Discussion

- Design hand for perception. Design for learning.
- You could say, it's not very good.
 - It fumbles.
 - But, so do humans.
 - Real problem: it fumbles slowly.

Future Work

Future Work

- Better hand:
 - Non-interfering fingers.
 - Palm and finger shape: V-shape potential fields.
 - Variable stiffness.

Future Work

- Better hand:
 - Non-interfering fingers.
 - Palm and finger shape: V-shape potential fields.
 - Variable stiffness.
- Better control:
 - Faster fumbling (Alberto's talk)
 - Learn policy

Thanks!!

