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Abstract—In this paper we report on a recent public exper-
iment that shows two robots making pancakes using web in-
structions. In the experiment, the robots retrieve instructions for
making pancakes from the World Wide Web and generate robot
action plans from the instructions. This task is jointly performed
by two autonomous robots: The first robot, TUM James, opens
and closes cupboards and drawers, takes a pancake mix from
the refrigerator, and hands it to the seoncd robot TUM Rosie.
The second robot cooks and flips the pancakes, and then delivers
them back to the first robot. While the robot plans in the scenario
are all percept-guided, they are also limited in different ways and
rely on manually implemented sub-plans for parts of the task.

I. INTRODUCTION

Enabling robots to competently perform everyday manip-
ulation activities such as cleaning up, setting a table, and
preparing simple meals exceeds, in terms of task, activity,
behavior and context complexity, anything that we have so far
investigated or successfully implemented in motion planning,
cognitive robotics, autonomous robot control and artificial
intelligence at large. Robots that are to perform human-scale
activities will get vague job descriptions such as clean up
or fix the problem and must then decide on how to perform
the task by doing the appropriate actions on the appropriate
objects in the appropriate ways in all contexts. While getting
the grounding of the actions and context correctly is certainly
a big research issue we will in this paper ignore it and
rather concentrate on the perception-action loop that had to
be implemented for pancake making (Figure [I). The latter
amounts to the following two steps: i) the robots must find
and recognize the ingredients and necessary tools needed for
making pancakes in their environment; ii) making pancakes
requires manipulation actions with effects that go far beyond
the effects of pick and place tasks. The robot must pour
pancake mix onto the center of the pancake oven and monitor
to forestall undesired effects such as spilling the pancake mix.
The robot must also push the spatula under the baking pancake
in order to flip the pancake. This requires the robot to flip the
pancake with the appropriate force, to push the spatula strong
enough to get it under the pancake but not too strong in order
to avoid pushing of the pancake off the oven.

In a recent experiment E| we have taken up the challenge
to write a comprehensive robot control program that retrieved
instructions for making pancakes from the world-wide welﬂ
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Fig. 1. TUM Rosie and TUM James demonstrating their abilities b
preparing pancake for the visitors.

converted the instructions into a robot action plan and executed
the plan with the help of a second robot that fetched the needed
ingredients and set the table. The purpose of this experiment
was, among others, to show the midterm feasibility of the
visions spelled out in the introductory paragraph.

In the remainder of this paper we report on the perception-
action loop side of this experiment and explain how we
tackled what we identified as key problems. We will sketch
the solutions to the individual problems, explain how they
are used in the overall problem solving, and point to more
detailed technical descriptions wherever possible. The paper
is constructed as follows. In the first part we explain the
concepts that have been used to solve the serving task using
TUM James robot [1] and in the second part we then discuss
the action of making the pancake, including perception and
dexterous manipulation using a spatula tool on a TUM Rosie
robot [2]]. We conclude with a discussion of limitations and
point at open research issues.

II. PERCEPTION-GUIDED SERVING

In the first part of the experiment the TUM James robot was
tasked to deliver a pancake mix from a refrigerator and serve
a plate and a cuttlery on a mock-up table. In this section we
break up the task in three parts: i) detection and manipulation
of a plate; ii) detection, recognition and manipulation of solid-
state objects and iii) opening of doors and drawers with a
priori unknown articulation mechanisms. All steps are percept-
guided and detailed below.

A. Finding Action Related Places

In real household environments, objects are typically stored
inside of cupboards and drawers and therefore the robot has



to search for them before it can recognize them. Thus, to find
the required objects quickly, a robot should search for the
objects at their most likely places first. To do so, our robots
use a semantic 3D object map of the environment, in which
structured models of objects, such as cupboards consisting
of the container, the door, the handle and hinges, are associ-
ated with first-order symbolic descriptions of the objects that
mainly come from the robot’s encyclopedic knowledge base
KNOWROB-MAP [12]. The environment map also contains
information about common locations of objects of daily use,
also called action related places, which we used as robots’
prior poses throughout the whole experiment.

B. Detecting and Picking-Up Plates

A uniformly colored plate is from the perception point of
view a challenging object. It is neither tall nor flat and, thus,
hard to be segmented as a cluster on the table using only depth
information. To avoid this problem, we initialize the search for
the plate with the query for the most circular, continuous edge
in the RGB image.

This is used to calculate a good approximation of the
position of the plate but with the uncertainty that the shadow
might arise as the strongest edge. To prevent the latter case
we cross check the position with the readings of a 3D stereo
camera sensor inside the estimated volume of the plate. With
this information we can estimate the height of the plate with a
precision of up to 0.01m. This approximate pose of the plate
is then used to set up the approach pose for the bimanual grasp
to the vicinity of the right and the left side of the plate. In
the next step we start pushing grippers inwards to the center
of the plate and use robot’s capacitive fingertip sensors (see
Figure 3] left) to detect collision with a plate. A compliant
grasp is then executed, leading to a firm grip of the plate with
both grippers. The compliant grasp adjusts the angle of the
gripper and moves the wrist while closing it, thereby avoiding
the collision of a plate with the gripper tips until both tips are
closed.

For lifting, putting down and handling the plate during
movements of the base, the arms are controlled in cartesian
space, thus maintaining the relative position of the grippers
while moving both arms.

C. Detecting, Recognizing and Picking-Up Textured Objects

Let us consider how the pancake mix is recognized. Many
ingredients can be recognized based on the images on the
front faces of their packages, which are often pictured in
shopping websites. To use these information resources, we
have downloaded the product descriptions of the web site Ger-
manDeli.com, which contains about 3500 common products.
The products of this website are categorized and include a
picture of the front face of the package. To link the product
descriptions to the robot’s knowledge base the robot defines
the product as a specialization of the product’s category.

To make use of the product pictures for object recognition,
we designed and implemented the Objects of Daily Use Finder

(ODUﬁnderﬂ an open-source perception system that can deal
with the detection of a large number of objects in a reliable and
fast manner. Even though it can detect and recognize textured
as well as untextured objects, we hereby do not report about
the latter. The models for perceiving the objects to be detected
and recognized can be acquired autonomously using either
the robot’s camera or by loading large object catalogs such
as the one by GermanDeli into the system. Product pictures

Fig. 2. Left: Region of Interest extraction using cluster segmentation
and back-projection of 3D points, Right: Pancake mix with extracted SIFT
features.

from online shops can provide good models of the texture of
objects, but do not contain information about their scale. For
manipulation, accurate scaling information is crucial and, in
our system, it was obtained by combining the 2D image-based
recognition with the information from a 3D tilting laser sensor.

For obtaining a 3D pose hypothesis, we use the observation
that, in human living environments, objects of daily use are
typically standing on horizontal planar surfaces, or as physics-
based image interpretation states it, they are in “stable force-
dynamic states”. The scenes they are part of can either be
cluttered, or the objects are isolated in the scene. While the
solution of the former is still an ongoing work, we solve the
latter by a combined 2D-3D extraction of objects standing
more or less isolated on planar surfaces.

This combined 2D-3D object detection takes a 3D point
cloud, acquired by a stereo camera system, and a camera
image of the same scene. Figure [2] left shows how the system
detects major horizontal planar surfaces within the point cloud
and segments out point clusters that are supported by these
planes [11]. The identified clusters in the point cloud are then
back-projected into the captured image to form the region of
interest that corresponds to the object candidate.

The ODUfinder then employs a novel combination of Scale
Invariant Features (SIFT) [9] for textured objects using a
vocabulary tree [10], which we extend in two important
ways: First, the comparison of object descriptions is done
probabilistically instead of relying on the more error-prone
original implementation with the accumulation of query sums.
Second, the system detects candidates for textured object parts
by over-segmenting image regions, and then combines the
evidence of the detected candidate parts in order to infer the
presence of the complete object. These extensions substantially
increase the detection rate as well as the detection reliability,

3http://www.ros.org/wiki/obje(:ts_of_daily_use_ﬁnder



in particular in the presence of occlusions and difficult lighting
conditions like specular reflections on object parts. In the
current ODUfinder configuration, the robot is equipped with
an object model library containing about 3500 objects from
Germandeli and more than 40 objects from the Semantic3D
databaseﬂ The system achieves an object detection rate of
10 frames per second and recognizes objects reliably with an
accuracy of over 90%. Object detection and recognition is fast
enough not to cause delays in the execution of robot tasks.

For picking up the bottle, a standard approach is used,
employing a cluster based grasp planner, maximizing the
coverage of the object while avoiding collision, together with
a joint-space arm planner [6]).

D. Detecting Handles and Opening Doors and Drawers

One of the aspects we investigated in more depth in
the experiments was the opening of furniture entities.
Figure [ shows the robot opening various cupboards, drawers
and appliances and generating the articulation models.

Algorithm 1: Controller for opening containers with un-
known articulation model
Initialize pulling direction D from plane normal
while Gripper did not slip off and Cartesian Error is
below threshold th = 0.035m do

if Toolframe close to Robot footprint in (x,y) then
L Move base to displace Toolframe away from

artificial workspace limit L
Pull with the stepsize 0.05m in direction d
Stabilize grasp using fingertip sensors (See Figure [3)
Calculate relative transform 7' between last trajectory
pose p;—1 and current one p;
| Set pulling direction D along transform T’
Return a set of poses P{po...pn} representing the
opening trajectory.

In this experiment we assume that all doors and drawers
have handles which can be detected by first finding the
front faces of furniture and then extracting and segmenting
the clusters of pointclouds that fall in the polygonal prisms
of previously detected faces [11]]. To such obtained handle
candidate we then fit RANSAC line and take line’s geometric
center to be handle’s grasp point.

For opening we developed a general controller (See Algo-
rithm [T) that employs the compliance of the TUM James’s
arms and the finger tip sensors to open different types of
containers without a priori knowledge of the articulation
model (rotational, prismatic). The robot moves the base during
the process of opening containers when necessary. Lacking
force sensors, the algorithm uses cartesian error of the tool
coordinate frame to determine when the maximum opening
is reached. The algorithm relies on the grippers maintaining
a strong grasp while the arms are compliant. Like that,
the mechanism that is to be opened steers the arm along
its trajectory even when there is a considerable difference

“http://ias.cs.tum.edu/download/semantic-3d

between the pulling and the opening direction. The controller
memorizes a set of poses with the stable (aligned) grasps and
returns those as an articulation model P. The controller works
reliably as long as the force required to open the container is
lower than the limit the friction of the gripper tips imposes.

Fig. 3. TUM James’s fingertip sensors (left) are used to adjust the tool frame
rotation to the rotated handle (right).

A particular problem when opening the unknown containers
is the possible collision of the containers with the robot. This
could occur when e.g.x a drawer close to the floor is being
opened and thus pulled into the robot’s base. Since the articula-
tion model is not known a priori, an actual motion planning is
not possible. We thus propose a following heuristics: exclude
poses whose projections of the gripper to the floor fall close
to or within the projection of the robot’s footprint from the
allowed workspace limit L of the gripper. Like that the robot
backs off and prevents the collisions.

Fig. 4. Opening of various doors and generation of articulation models (green
arrows).

III. PERCEPTION-GUIDED PANCAKE MAKING

The experiment also includes the realization of a simple
manipulation task that exhibits many characteristics of meal
preparation tasks: cooking a pancake on a pan. Taking au-
tonomous robot control from pick and place tasks to everyday
object manipulation is a big step that requires robots to
understand much better what they are doing, a much more
capable perception, as well as sophisticated force-adaptive



control mechanisms that even involve the operation of tools
such as the spatula.

In this section, we consider the process of making the
pancakes by structuring it into the three steps specified in
the instructions: 1) pouring the pancake mix; 2) flipping the
pancake; and 3) putting the finished pancake on the plate.
All steps are performed autonomously on TUM Rosie robot
through the use of perception-guided control routines.

A. Pouring the Pancake Mix onto the Pancake Maker

The first step, pouring the pancake mix requires the robot
to 1) detect and localize the cooking pan or pancake-maker as
well as the bottle with the pancake mix, 2) pick up the pancake
mix and position the tip of the bottle above the center of the
pancake maker, and 3) pour the right amount of pancake mix
onto the pancake maker. We will discuss these steps below.

1) Detecting and Localizing the Relevant Objects: The
robot performs the detection and localization of the relevant
objects using object type specific perception routines. The
black color in combination with the metallic surface of the
pancake maker makes the readings of time-of-flight sensors
very noisy, and the heat of the pancake maker requires
particularly high reliability of operation. On the other hand,
the accuracy demands for successful action execution are
less for the destination of the pouring action (roughly in
the center of the object) than for successfully grasping an
object. One basic principle that we used for the realization
of perceptual mechanisms is that we apply a team of context
specific perception mechanisms rather than aiming for a single
but overly general perception mechanism [3].

Thus for the detection and rough localization of the pancake
maker we provided the robot with a previously calibrated
planar shape model of the top plane of the pancake maker
and used this to localize the pancake maker. For matching in
the online phase we used the method proposed by Hofhauser
et al. [4] on images of a RGB-camera. This method is very
fast, and gives an accurate result in less than half a second
which is already cross checked over the second camera in the
stereo pair.

The method for localizing the pancake mix also exploits
the task context. Because the pancake mix is delivered by
the other robot, it is reasonable and useful to assume that the
pancake mix is placed where it is easily reachable by the robot
and second that the location is approximately known. Thus,
the robot uses a perception mechanisms that exploits these
regularities and confines itself to finding a point cluster at the
approximate position with the approximate dimensions of the
pancake mix. This method is efficient as well as reliable and
accurate enough to pick up the pancake mix (see [8] for details
on the cluster detection). The pancake-mix is grasped with a
power grasp coupled with a validation of the grasp success,
which we discuss later.

2) Pouring the Adequate Amount of the Pancake Mix: In
order to make pancakes of the appropriate size the robot has to
pour the right amount of pancake mix onto the pancake maker.
This is accomplished by estimating the weight of the mix that

has been poured onto the pan. After successfully lifting the
pancake-mix, the weight of the bottle is estimated using the
measured joint torques.

To pour the pancake mix onto the pancake maker, the robot
estimates the height of the top of the pancake mix bottle and
uses this information to determine the right pose of the robot
hand. The pouring time is adjusted using a hand crafted linear
formula with the weight of the bottle as a parameter.

In order to validate the success and estimate the effects of
the pouring action the robot applies a blob detection with the
image region corresponding to the pancake maker as the search
window. After a color-based segmentation, all components
which are not similar in intensity to the pan are considered
as pancakes or pancake parts. The noise removal on the
segmentation results then gives the robot a sufficiently good
model of the position (relative to the pan) and form of the
pancake. This perception task is performed in real time and
also works in the presence of the spatula.

B. Flipping the Pancake

The key steps in flipping the pancake are 1) to grasp and
hold the spatula sufficiently well to use it as a tool, 2) to
calibrate the spatula with the hand such that the robot can
control and determine the accurate pose of the spatula through
its internal encoders, and 3) to perform an adaptive stiffness
control to push the spatula under the pancake without pushing
the pancake off the pancake maker.

1) Picking Up and Holding the Spatula Properly: The
spatula has been modified to give it a broader handle, so that
the robot can hold it securely in its oversized hand.

The spatula is detected, localized, and approximately recon-
structed through the use of our 3D sensors, in this case the ToF
camera. To match the surface of the spatula with the current
sensor data we use the method proposed by Drost et al. [3].
To train the object we observed it once on a table without
clutter and took the result of a 3D cluster segmentation as the
surface template.

Fig. 5. A supervision system detects good (left) and bad (right) grasps.
To deal with uncertainty in perception, that can lead to

sub-optimal grasps, a simple system is used to evaluate grasp
quality, using measured finger positions and torques. To this
end, the data vector distances between current measurements
and a known good and known bad grasps are calculated and
used as a quality values. A low quality score leads to a grasp
retry, and given another low value, the object is localized again
and the complete grasping action is repeated.



Figure [5] shows a grasp that fulfills these properties on the
left, and a failed one on the right. Grasps may fail due to
unexpected contacts with parts of the object or delays in the
control of the fingers.

2) Controlling the Spatula as an End Effector: To lift the
pancake successfully, the robot should treat the spatula as a
body part rather than an object that has to be manipulated. This
means, the kinematic model of the arm is extended to include
the spatula, and the algorithms used to detect collisions with
the hand are modified to detect collisions on the spatula.

To use the spatula as a tool, its relative position to the hand
has to be known precisely after the robot has grasped it. For
this effect, the robot performs an online calibration using the
same method that is used to localize the pancake maker. In
this case the planar assumption is valid for the complete top
part of our tool. To gain a higher accuracy, the matching is
applied several times, always matching on both stereo images
and validating the consistency of the results. The results from
all matchings are taken as a set of hypotheses, which are used
to calculate a robust mean value in translation and rotation.
Figure [6] shows the position in which the robot holds the
spatula (left) and the intrinsic view of the robot in visualization
(middle) and the camera image at this point in time (right).

3) Movement Control of the Pancake Tip: To flip a pancake
with a spatula, the robot must push the spatula under the center
of the pancake without pushing the pancake off and deforming
or destroying it. To do so, the robot pushes the spatula down
until it touches the pan and the tip is parallel to the surface.
The robot moves the spatula in a straight line between the
point of contact with the pan and the center of the pancake.

(a) Approach the pancake (reference (b) First contact of the spatula

frames overlayed). with the pan.

Fig. 7. Flipping the pancake.

Figure shows the moment when the robot has lowered
the tool until it touched the pan. This contact produces
measurable force changes in the fingers, so that the event can
be reliably detected.

In order to correctly detect the contact of the tip with the
pan, a band pass filter is applied to the 12 torque streams
coming from the hand at 1kHz, eliminating the constant
torques for holding the object and the high-frequency noise
from the motor controllers. We calculate the dot product of
the filtered torque vectors with a template vector, and a high
value is measured shortly after the collision.

After touching the pan, its height is known precisely, and
the rest of the movements take this into account.

4) Picking and Turning the Pancake: The trajectory to pick
up the pancake, lift and turn it was taught by demonstration
and is only parametrized with the pancake’s position, corrected
by the newly estimated height of the pan. The spatula has
to be positioned under the pancake, then the pancake can be
lifted. Afterwards, the pancake has to be turned and dropped
back to the pan. The pancake tends to stick at this stage to the
spatula, which requires the robot to apply various accelerations
to the spatula to separate the pancake again. This introduces
uncertainty about the position of the pancake after this action.

5) Checking the estimated Result: Dropping the pancake
back onto the pan can have three possible outcomes: 1) the
pancake falls pack to its original position in the center of the
pan, 2) the pancake drops a little bit off the center (usually
still on the pan) and 3) the pancake keeps sticking on the
spatula. The first two cases can be detected by re-detecting the
pancake on the pan and the third case follows if the pancake
cannot be detected on the pan anymore. While case one does
not require further actions, the second case is corrected by
centering the pancake with the spatula again. In the third case,
the robot continues moving the arm up and down until the
pancake drops.

C. Putting the Pancake onto a Plate

After TUM James placed a plate close to the pan,
TUM Rosie can move the pancake to the plate. The pancake
is moved from its current position to the center of the plate.
As the friction of a done pancake is too low to lift it, the robot
pushes the pancake off the pan on to the plate.

IV. CONCLUSIONS AND RESEARCH ISSUES

In this paper we have presented an experiment in which
robots retrieved a simple instruction for a meal preparation task
from the web and semi-automatically translated it into a robot
plan that was jointly executed by the robots. The experiment
was a feasibility study. Many aspects have been solved very
specifically and some actions have been hand-coded.

While the robot plans in the scenario are all percept-
guided they are also in many ways limited, use shallow,
heuristic and ad-hoc solutions, and are overspecialized to the
scenario. These limitations point us at fundamental research
and technological questions that need to be answered in order
to accomplish these kinds of everyday manipulation tasks
in more general, flexible, reliable, and principled ways. In
addition, the issues identified in [7] apply to our control task.

We believe that robots that are to scale towards human-scale
activities require knowledge-enabled decision making and the
control systems need to be knowledge intensive. We have seen
in the paper that we have applied many specific mechanisms to
do the job. We believe that this is not due to the state of the art
of robot control but rather that more future advanced control
system will also employ such specific methods. Generality and
competence will lie in selecting the approprate mechanisms for
large ranges of environment and task contexts.

This work was supported by CoTeSys (Cognition for Tech-
nical Systems) cluster of excellence at TUM and by MVTec
Software GmbH, Miinchen.
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Fig. 6. Calibration of the spatula.
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