Abort and Retry ... or Fast Fumbling

ICRA 2011 - Workshop Mobile Manipulation

May 13, 2011

Alberto Rodriguez, Matthew T. Mason, Siddhartha S. Srinivasa, Matthew Bernstein and Alex Zirbel

Grasping Approach

"Put the fingers on the right place"

Assume
Complex Hands

"Let the fingers fall where they may" Expect Simple Hands

Let the fingers ...

"Hand conforms to object"

Passive Adaptation

"Object conforms to hand"

Passive Sensing

Bin-Picking

- High clutter.
- High pose uncertainty.
- Goal: Singulation.
- Simple Hand
 - ✓ Singe actuator.
 - √ Thin, hard compliantly coupled fingers.
 - ✓ Low friction.

Bin-Picking

- Blind grasp.
- Grasp signature.
- Success/Failure.

• Success ratio 42%

$$\tau$$
 = 2.17

We can do better

Probability of Success

15.0 s

90°

• Data driven model of instantaneous probability of success.

$$\mathcal{M}: s([0,t]) \longrightarrow p(t)$$

- Relevance Vector Machine.
- Principal Component Analysis.

Abort and Retry

- Threshold the probability of success?
 - ✓ Discretize the system: $S_1, S_2 \dots S_n$
 - ✓ Instantaneous probabilities: $p_1, p_2 \dots p_n$
 - ✓ Abort thresholds: $\pi_1, \pi_2 \dots \pi_n$
 - √ Transition probabilities

$$P_i = P\left[S_i \to S_{i+1}\right]$$

Abort and Retry Model

• Markov Chain

- Transition cost Δt
- Abort cost R

Time Successful Grasp

$$\tau = \Delta t \left[\frac{1 + \sum_{i=1}^{n-1} \left(\prod_{j=1}^{i} P_j \right)}{\prod_{i=1}^{n} P_i} \right] + R \left[\frac{1 - \prod_{i=1}^{n} P_i}{\prod_{i=1}^{n} P_i} \right]$$

- Estimate first P_i to estimate τ
 - √ Given N grasp executions.
 - √ Choose thresholds.
 - ✓ Estimate $P_i = \frac{\text{Grasps reach } S_{i+1}}{\text{Grasps reach } S_i}$
 - **√** Compute τ
- Off the shelf direct search optimizer.

Implementation

- ROS
- State machine that implements the Markov Chain.
 - ✓ Robot controller.
 - √ Grasp controller.
 - √ Vision interface.
 - √ Learning interface.

Results

\overline{n}	au	Improvement
I	2.17	-
2	2.12	4.3%
4	1.98	16.5%
8	1.91	22.0%
16	1.58	50.4%

Take Home Message

- Simple Hands are less capable than Complex Hands but more capable than we think.
- Use proprioception to observe the grasp process.

