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Abstract—We present a novel robotic grasp controller that
allows a sensorized parallel jaw gripper to gently pick up and set
down unknown objects once a grasp location has been selected.
Our approach is inspired by the control scheme that humans
employ for such actions, which is known to centrally depend
on tactile sensation rather than vision or proprioception. Our
controller processes measurements from the gripper’s fingertip
pressure arrays and hand-mounted accelerometer in real time to
generate robotic tactile signals that are designed to mimic human
SA-I, FA-I, and FA-II channels. These signals are combined
into tactile event cues that drive the transitions between six
discrete states in the grasp controller: Close, Load, Lift and Hold,
Replace, Unload, and Open. The controller selects an appropriate
initial grasping force, detects when an object is slipping from the
grasp, increases the grasp force as needed, and judges when to
release an object to set it down. We demonstrate the promise
of our approach through implementation on the PR2 robotic
platform, including grasp testing on a large number of real-world
objects.

Index Terms—robot grasping, tactile sensing

I. INTRODUCTION

AS robots move into human environments, they will need
to know how to grasp and manipulate a very wide variety

of objects [1]. For example, some items may be soft and light,
such as a stuffed animal or an empty cardboard box, while
others may be hard and dense, such as a glass bottle or an
apple. After deciding where such objects should be grasped
(finger placement), the robot must also have a concept of how
to execute the grasp (finger forces and reactions to changes in
grasp state). A robot that operates in the real world must be
able to quickly grip a wide variety of objects firmly, without
dropping them, and delicately, without crushing them (Fig. 1).

Non-contact sensors such as cameras and laser scanners are
essential for robots to recognize objects and plan where to
grasp them, e.g., [2], [3]. Recognition and planning may also
instruct the grasping action, for example providing an object’s
expected stiffness, weight, frictional properties, or simply the
required grasp forces. But to safely handle unknown objects
as well as to remain robust to inevitable uncertainties, any
such a priori information must be complemented by real-time
tactile sensing and observations. Indeed tactile sensors are
superior to other modalities at perceiving interactive events,
such as the slip of an object held in the fingers, a glancing
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Fig. 1. The Willow Garage PR2 robot using our grasp controller to carefully
handle two sensitive everyday objects.

collision between the object and an unseen obstacle, or the
deliberate contact when placing the object. Understanding
contact using tactile information and reacting in real time will
be critical skills for robots to successfully interact with real-
world objects, just as they are for humans.

A. Human Grasping
Neuroscientists have thoroughly studied the human talent

for grasping and manipulating objects. As recently reviewed
by Johansson and Flanagan [4], human manipulation makes
great use of tactile signals from several different types of
mechanoreceptors in the glabrous (non-hairy) skin of the hand,
with vision and proprioception providing information that is
less essential. Table I provides a list of the four types of
mechanoreceptors in human glabrous skin. Johansson and
Flanagan divide the seemingly effortless action of picking up
an object and setting it back down into seven distinct states:
reach, load, lift, hold, replace, unload, and release. In the first
phase, humans close their grasp to establish finger contact with
the object. Specifically, the transition from reach to load is
known to be detected through the FA-I (Meissner) and FA-
II (Pacinian) afferents, which are stimulated by the initial
fingertip contact. FA signifies that these mechanoreceptors are
fast-adapting; they respond primarily to changes in mechanical
stimuli, with FA-I and FA-II having small and large receptive
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The tactile afferents that innervate the inside of the hand 
signal the transformation of soft tissues that occurs when 
the hand interacts with objects and thus provide infor-
mation about the physical properties of the object and 
the contact between the object and the hand. People with 
impaired tactile sensibility have difficulties with many 
everyday activities because the brain lacks the infor-
mation about mechanical contact states that is needed 
to plan and control object manipulations. Vision pro-
vides only indirect information about such mechani-
cal interactions, and proprioceptive afferents exhibit low  
sensitivity to mechanical fingertip events1–4.

In this Review, we address emerging concepts regard-
ing the use of tactile information by the brain in manipu-
lation tasks. In doing so, we discuss the notion that the 
planning and control of manipulation tasks is centred 
on mechanical events that mark transitions between 
consecutive action phases and that represent subgoals of 
the overall task. We highlight recent findings that help 
explain the speed with which the brain detects and classi-
fies tactile fingertip events in object manipulation. Finally, 
we discuss multisensory representation of action goals in 
object manipulation. Our account differs from a recent 
review of tactile signals in manipulation5 by emphasizing 
the use of these signals in the control of manipulatory 
tasks, by considering how other sensory signals contrib-
ute to this control and by discussing the central neural 
mechanisms involved in manipulation tasks.

Tactile sensors encoding fingertip transformations
When humans manipulate objects, the brain uses tac-
tile afferent information related to the time course, 
magnitude, direction and spatial distribution of contact 
forces, the shapes of contacted surfaces, and the friction 
between contacted surfaces and the digits. The inside of 

the human hand is equipped with four functionally dis-
tinct types of tactile afferents (TABLE 1; reviewed in more 
detail in REFS 5,6). FA-I (fast-adapting type I) and SA-I 
(slow-adapting type I) afferents terminate superficially in 
the skin, with a particularly high density in the fingertips. 
FA-Is exhibit sensitivity to dynamic skin deformations of 
relatively high frequency7,8, whereas SA-Is are most easily 
excited by lower-frequency skin deformations7,8 and can 
respond to sustained deformation. There are more FA-I 
afferents than SA-I afferents in the fingertips (TABLE 1), 
reflecting the importance of extracting spatial features 
of dynamic mechanical events, such as the skin forming 
and breaking contact with objects or scanning across a 
textured surface.

FA-II and SA-II afferents innervate the hand with 
a lower and roughly uniform density and terminate 
deeper in dermal and subdermal fibrous tissues. FA-II 
afferents are optimized for detecting transient mechani-
cal events7–10. Hundreds of FA-II afferents, distributed 
throughout the hand, can be excited when hand-held 
objects contact or break contact with other objects11. 
SA-II afferents can respond to remotely applied lateral 
stretching of the skin12,13 and can be sensitive to the tan-
gential shear strain to the skin that occurs during object 
manipulation2,11. SA-II-like afferents are found in most 
fibrous tissues (such as muscle fascias and joint capsules 
and ligaments)14 and there is evidence that they can act 
as proprioceptors (BOX 1).

Traditional studies on tactile sensing that examine 
correlations between afferent signals and perceptual 
(declarative) phenomena evoked by gently touching pas-
sive digits (for reviews see REFS 6,14–20) provide little 
information about the encoding and use of tactile infor-
mation in object manipulation for several reasons: the 
control processes that are active in manipulation operate 
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Tactile afferents
Fast-conducting myelinated 
afferent neurons that convey 
signals to the brain from 
low-threshold 
mechanoreceptors in body 
areas that actively contact 
objects — that is, the inside  
of the hand, the sole of the 
foot, the lips, the tongue and 
the oral mucosa.

Proprioceptive afferents
Fast-conducting myelinated 
afferents that provide 
information about joint 
configurations and muscle 
states. These include 
mechanoreceptive afferents 
from the hairy skin, muscles, 
joints and connective tissues.

Coding and use of tactile signals  
from the fingertips in object 
manipulation tasks
Roland S. Johansson* and J. Randall Flanagan‡

Abstract | During object manipulation tasks, the brain selects and implements action-phase 

controllers that use sensory predictions and afferent signals to tailor motor output to the 

physical properties of the objects involved. Analysis of signals in tactile afferent neurons and 

central processes in humans reveals how contact events are encoded and used to monitor 

and update task performance.
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Table 1 | Tactile sensory innervation of the hand

Afferent type  
(and response properties)

Receptive field  
(and probe)

Density  
(afferents per cm2)

FA-I (fast-adapting type I) 
Meissner endings

• Sensitive to dynamic skin 
deformation of relatively 
high frequency (~5–50 Hz)

• Insensitive to static force
• Transmit enhanced 

representations of local 
spatial discontinuities 
(e.g., edge contours and 
Braille-like stimuli)

SA-I (slowly-adapting type I) 
Merkel endings

• Sensitive to low-frequency 
dynamic skin deformations 
(<~5 Hz)

• Sensitive to static force
• Transmit enhanced 

representations of local 
spatial discontinuities

FA-II (fast-adapting type II) 
Pacini ending

• Extremely sensitive to 
mechanical transients and 
high-frequency vibrations 
(~40–400 Hz) propagating 
through tissues

• Insensitive to static force
• Respond to distant events 

acting on hand-held objects

SA-II (slowly-adapting type II) 
Ruffini-like endings

• Low dynamic sensitivity
• Sensitive to static force
• Sense tension in dermal and 

subcutaneous collagenous 
fibre strands

• Can fire in the absence 
of externally applied 
stimulation and respond to 
remotely applied stretching 
of the skin

Data from REFS 6,20.
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Action-phase controller
A learned sensorimotor 
‘control policy’ that uses 
specific sensory information 
and sensory predictions to 
generate motor commands  
to attain a sensory goal.

Sensorimotor control point
A planned contact event in 
which predicted and actual 
sensory signals are compared 
to assess the outcome of an 
executed action-phase 
controller.

largely subconsciously and very rapidly, the use of tac-
tile signals differs across tasks and task phases, and the 
forces that are involved in manipulation typically differ 
from the forces that are present during gentle touch.

The information that a mechanoreceptive affer-
ent conveys depends on several factors, including the 
branching of the nerve terminal, the mechanical proper-
ties of the end organs of the nerve endings, the anchor-
ing of the end organs in the surrounding tissues and, not 
least, the overall mechanical deformational properties of 
these tissues. Thus, the distributed patterns of stresses 
and strains that develop in the skin and the underlying 
tissues when a fingertip interacts with an object affect 
both afferents that terminate in contact areas and affer-
ents that terminate remotely21–23. This implies that the 

actual receptive field of an afferent can be considerably 
larger than the classical cutaneous receptive field deline-
ated by lightly touching the hand with a  pointed object 
(TABLE 1). Consequently, models of neural encoding of 
tactile stimuli that visualize the receptor mosaic as a 
two-dimensional pixel-like array of densely localized 
sensors distributed over a flat skin surface15–17 are not 
viable for predicting tactile signalling in manipulation 
tasks. Importantly, the functional overlap of large recep-
tive fields can enhance rather than degrade the encoding 
of spatiotemporal information24,25.

Owing to the mechanical properties of the fingertip, the 
mapping between fingertip events and afferent responses 
is highly complex16,22,23. Simply looking at how the  
pattern of stress develops in the contact area when  
the fingertip contacts a flat surface demonstrates this 
complexity (BOX 2). Researchers have attempted to model 
the mechanics of the fingertip while incorporating its 
composite material properties, with the goal of predict-
ing the responses of populations of tactile afferents to 
various fingertip stimuli26–34. However, no model yet 
possesses the level of realism that satisfies this goal.

Contact events and action goals in manipulation
Dexterous manipulation tasks can be broken down 
into a series of action phases, usually delimited by the 
mechanical events that represent subgoals of the task 
(see REFS 5,35 for details). For example, when picking 
up a hammer to strike a nail, contact between the digits 
and the handle marks the end of the reach phase; the 
braking of contact between the hammer and the support 
surface marks the end of the load phase; and contact 
between the hammer head and the nail marks the end of 
the swing phase. Mechanical events involved in manipu-
lation generate specific patterns of activity in the tactile 
afferents and often also in auditory and visual afferents. 
Thus, manipulation tasks can be specified as a sequence 
of specific sensory events linked to subgoals.

To achieve these subgoals the brain has to select and 
execute appropriate action-phase controllers5 (BOX 3). In 
order to accurately predict the required motor output 
and associated sensory events, action-phase control-
lers must have information about the properties of the 
objects involved and the current state of the motor appa-
ratus. If predictions are erroneous, corrective actions can 
be launched based on real-time sensory information. 
However, because of the long time delays in sensorimotor 
control loops engaged in corrective actions (~100 ms), 
dexterous manipulation is not possible unless predictions 
are accurate5. In order to smoothly link action phases, 
the predicted terminal sensory state of the active con-
troller could be used as the initial state by the controller 
responsible for the next action phase. If the brain relied 
on peripheral afferent information to obtain this state 
information, stuttering phase transitions would occur.

The comparison of predicted and actual sensory sig-
nals can be used to monitor task progression and detect 
performance errors (BOX 3). Contact events, which denote 
completion of action goals, represent crucial sensorimotor 
control points because they give rise to discrete sensory 
signals in one or more modalities. If an error is detected, 
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Ruffini-like endings

• Low dynamic sensitivity
• Sensitive to static force
• Sense tension in dermal and 

subcutaneous collagenous 
fibre strands

• Can fire in the absence 
of externally applied 
stimulation and respond to 
remotely applied stretching 
of the skin

Data from REFS 6,20.
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largely subconsciously and very rapidly, the use of tac-
tile signals differs across tasks and task phases, and the 
forces that are involved in manipulation typically differ 
from the forces that are present during gentle touch.

The information that a mechanoreceptive affer-
ent conveys depends on several factors, including the 
branching of the nerve terminal, the mechanical proper-
ties of the end organs of the nerve endings, the anchor-
ing of the end organs in the surrounding tissues and, not 
least, the overall mechanical deformational properties of 
these tissues. Thus, the distributed patterns of stresses 
and strains that develop in the skin and the underlying 
tissues when a fingertip interacts with an object affect 
both afferents that terminate in contact areas and affer-
ents that terminate remotely21–23. This implies that the 

actual receptive field of an afferent can be considerably 
larger than the classical cutaneous receptive field deline-
ated by lightly touching the hand with a  pointed object 
(TABLE 1). Consequently, models of neural encoding of 
tactile stimuli that visualize the receptor mosaic as a 
two-dimensional pixel-like array of densely localized 
sensors distributed over a flat skin surface15–17 are not 
viable for predicting tactile signalling in manipulation 
tasks. Importantly, the functional overlap of large recep-
tive fields can enhance rather than degrade the encoding 
of spatiotemporal information24,25.

Owing to the mechanical properties of the fingertip, the 
mapping between fingertip events and afferent responses 
is highly complex16,22,23. Simply looking at how the  
pattern of stress develops in the contact area when  
the fingertip contacts a flat surface demonstrates this 
complexity (BOX 2). Researchers have attempted to model 
the mechanics of the fingertip while incorporating its 
composite material properties, with the goal of predict-
ing the responses of populations of tactile afferents to 
various fingertip stimuli26–34. However, no model yet 
possesses the level of realism that satisfies this goal.

Contact events and action goals in manipulation
Dexterous manipulation tasks can be broken down 
into a series of action phases, usually delimited by the 
mechanical events that represent subgoals of the task 
(see REFS 5,35 for details). For example, when picking 
up a hammer to strike a nail, contact between the digits 
and the handle marks the end of the reach phase; the 
braking of contact between the hammer and the support 
surface marks the end of the load phase; and contact 
between the hammer head and the nail marks the end of 
the swing phase. Mechanical events involved in manipu-
lation generate specific patterns of activity in the tactile 
afferents and often also in auditory and visual afferents. 
Thus, manipulation tasks can be specified as a sequence 
of specific sensory events linked to subgoals.

To achieve these subgoals the brain has to select and 
execute appropriate action-phase controllers5 (BOX 3). In 
order to accurately predict the required motor output 
and associated sensory events, action-phase control-
lers must have information about the properties of the 
objects involved and the current state of the motor appa-
ratus. If predictions are erroneous, corrective actions can 
be launched based on real-time sensory information. 
However, because of the long time delays in sensorimotor 
control loops engaged in corrective actions (~100 ms), 
dexterous manipulation is not possible unless predictions 
are accurate5. In order to smoothly link action phases, 
the predicted terminal sensory state of the active con-
troller could be used as the initial state by the controller 
responsible for the next action phase. If the brain relied 
on peripheral afferent information to obtain this state 
information, stuttering phase transitions would occur.

The comparison of predicted and actual sensory sig-
nals can be used to monitor task progression and detect 
performance errors (BOX 3). Contact events, which denote 
completion of action goals, represent crucial sensorimotor 
control points because they give rise to discrete sensory 
signals in one or more modalities. If an error is detected, 
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Table 1 | Tactile sensory innervation of the hand

Afferent type  
(and response properties)

Receptive field  
(and probe)

Density  
(afferents per cm2)

FA-I (fast-adapting type I) 
Meissner endings

• Sensitive to dynamic skin 
deformation of relatively 
high frequency (~5–50 Hz)

• Insensitive to static force
• Transmit enhanced 

representations of local 
spatial discontinuities 
(e.g., edge contours and 
Braille-like stimuli)

SA-I (slowly-adapting type I) 
Merkel endings

• Sensitive to low-frequency 
dynamic skin deformations 
(<~5 Hz)

• Sensitive to static force
• Transmit enhanced 

representations of local 
spatial discontinuities

FA-II (fast-adapting type II) 
Pacini ending

• Extremely sensitive to 
mechanical transients and 
high-frequency vibrations 
(~40–400 Hz) propagating 
through tissues

• Insensitive to static force
• Respond to distant events 

acting on hand-held objects

SA-II (slowly-adapting type II) 
Ruffini-like endings

• Low dynamic sensitivity
• Sensitive to static force
• Sense tension in dermal and 

subcutaneous collagenous 
fibre strands

• Can fire in the absence 
of externally applied 
stimulation and respond to 
remotely applied stretching 
of the skin

Data from REFS 6,20.

Nature Reviews | Neuroscience

Weak pointed touch

Weak pointed touch

Light tapping

Touch or skin stretch

140

70

0

Action-phase controller
A learned sensorimotor 
‘control policy’ that uses 
specific sensory information 
and sensory predictions to 
generate motor commands  
to attain a sensory goal.

Sensorimotor control point
A planned contact event in 
which predicted and actual 
sensory signals are compared 
to assess the outcome of an 
executed action-phase 
controller.

largely subconsciously and very rapidly, the use of tac-
tile signals differs across tasks and task phases, and the 
forces that are involved in manipulation typically differ 
from the forces that are present during gentle touch.

The information that a mechanoreceptive affer-
ent conveys depends on several factors, including the 
branching of the nerve terminal, the mechanical proper-
ties of the end organs of the nerve endings, the anchor-
ing of the end organs in the surrounding tissues and, not 
least, the overall mechanical deformational properties of 
these tissues. Thus, the distributed patterns of stresses 
and strains that develop in the skin and the underlying 
tissues when a fingertip interacts with an object affect 
both afferents that terminate in contact areas and affer-
ents that terminate remotely21–23. This implies that the 

actual receptive field of an afferent can be considerably 
larger than the classical cutaneous receptive field deline-
ated by lightly touching the hand with a  pointed object 
(TABLE 1). Consequently, models of neural encoding of 
tactile stimuli that visualize the receptor mosaic as a 
two-dimensional pixel-like array of densely localized 
sensors distributed over a flat skin surface15–17 are not 
viable for predicting tactile signalling in manipulation 
tasks. Importantly, the functional overlap of large recep-
tive fields can enhance rather than degrade the encoding 
of spatiotemporal information24,25.

Owing to the mechanical properties of the fingertip, the 
mapping between fingertip events and afferent responses 
is highly complex16,22,23. Simply looking at how the  
pattern of stress develops in the contact area when  
the fingertip contacts a flat surface demonstrates this 
complexity (BOX 2). Researchers have attempted to model 
the mechanics of the fingertip while incorporating its 
composite material properties, with the goal of predict-
ing the responses of populations of tactile afferents to 
various fingertip stimuli26–34. However, no model yet 
possesses the level of realism that satisfies this goal.

Contact events and action goals in manipulation
Dexterous manipulation tasks can be broken down 
into a series of action phases, usually delimited by the 
mechanical events that represent subgoals of the task 
(see REFS 5,35 for details). For example, when picking 
up a hammer to strike a nail, contact between the digits 
and the handle marks the end of the reach phase; the 
braking of contact between the hammer and the support 
surface marks the end of the load phase; and contact 
between the hammer head and the nail marks the end of 
the swing phase. Mechanical events involved in manipu-
lation generate specific patterns of activity in the tactile 
afferents and often also in auditory and visual afferents. 
Thus, manipulation tasks can be specified as a sequence 
of specific sensory events linked to subgoals.

To achieve these subgoals the brain has to select and 
execute appropriate action-phase controllers5 (BOX 3). In 
order to accurately predict the required motor output 
and associated sensory events, action-phase control-
lers must have information about the properties of the 
objects involved and the current state of the motor appa-
ratus. If predictions are erroneous, corrective actions can 
be launched based on real-time sensory information. 
However, because of the long time delays in sensorimotor 
control loops engaged in corrective actions (~100 ms), 
dexterous manipulation is not possible unless predictions 
are accurate5. In order to smoothly link action phases, 
the predicted terminal sensory state of the active con-
troller could be used as the initial state by the controller 
responsible for the next action phase. If the brain relied 
on peripheral afferent information to obtain this state 
information, stuttering phase transitions would occur.

The comparison of predicted and actual sensory sig-
nals can be used to monitor task progression and detect 
performance errors (BOX 3). Contact events, which denote 
completion of action goals, represent crucial sensorimotor 
control points because they give rise to discrete sensory 
signals in one or more modalities. If an error is detected, 
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forces than the SA-I or the FA-I populations, because they 
innervate the fingertip more sparsely103 (TABLE 1).

Occasionally, frictional slips occur that rapidly shift 
the object load from the slipping digit to the other 

digits engaged in gripping the object. Such load shifts, 
which are reliably signalled by FA-I afferents2,96, trigger 
a phase-appropriate corrective action that results in a 
lasting update of grip-to-load force ratios at the engaged 

 Box 3 | Sensorimotor control points in a prototypic object manipulation task

Manipulation tasks are characterized by a sequence of action phases separated by contact events that define task 

subgoals. Consider the task of grasping an object, lifting it from a table, holding it in the air and then replacing it (see part 

a of the figure)63. The goal of the initial reach phase is marked by the digits contacting the object and the goal of the 

subsequent load phase is marked by the breaking of contact between the object and the support surface. These  

and subsequent contact events correspond to discrete sensory events that are characterized by specific afferent neural 

signatures in the tactile modality (part b) and often in the auditory and visual modalities (not shown). Such signatures 

specify the functional goals of successive action phases. In addition to generating motor commands, each action-phase 

controller predicts the sensory events that signify subgoal attainment. Thus, the brain can monitor task progression and 

produce corrective actions if mismatches are detected. Recordings of tactile afferent signals in single neurons of the 

human median nerve during the lift and replace task11 have shown that there are distinct discharges from the fingertips at 

four points corresponding to subgoal events (part b): responses primarily in FA-I (fast-adapting type I) afferents when the 

object is contacted and released and responses in FA-II afferents related to the transient mechanical events that 

accompany the object lifting off and being replaced on the support surface. In addition to responses to distinct contact 

events, many SA-I (slow-adapting type I) and SA-II afferents discharge when static forces are applied to the object. Figure 

is modified, with permission, from REF. 5  (2008) Academic Press.  
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forces than the SA-I or the FA-I populations, because they 
innervate the fingertip more sparsely103 (TABLE 1).

Occasionally, frictional slips occur that rapidly shift 
the object load from the slipping digit to the other 

digits engaged in gripping the object. Such load shifts, 
which are reliably signalled by FA-I afferents2,96, trigger 
a phase-appropriate corrective action that results in a 
lasting update of grip-to-load force ratios at the engaged 

 Box 3 | Sensorimotor control points in a prototypic object manipulation task

Manipulation tasks are characterized by a sequence of action phases separated by contact events that define task 

subgoals. Consider the task of grasping an object, lifting it from a table, holding it in the air and then replacing it (see part 

a of the figure)63. The goal of the initial reach phase is marked by the digits contacting the object and the goal of the 

subsequent load phase is marked by the breaking of contact between the object and the support surface. These  

and subsequent contact events correspond to discrete sensory events that are characterized by specific afferent neural 

signatures in the tactile modality (part b) and often in the auditory and visual modalities (not shown). Such signatures 

specify the functional goals of successive action phases. In addition to generating motor commands, each action-phase 

controller predicts the sensory events that signify subgoal attainment. Thus, the brain can monitor task progression and 

produce corrective actions if mismatches are detected. Recordings of tactile afferent signals in single neurons of the 

human median nerve during the lift and replace task11 have shown that there are distinct discharges from the fingertips at 

four points corresponding to subgoal events (part b): responses primarily in FA-I (fast-adapting type I) afferents when the 

object is contacted and released and responses in FA-II afferents related to the transient mechanical events that 

accompany the object lifting off and being replaced on the support surface. In addition to responses to distinct contact 

events, many SA-I (slow-adapting type I) and SA-II afferents discharge when static forces are applied to the object. Figure 

is modified, with permission, from REF. 5  (2008) Academic Press.  

REVIEWS

NATURE REVIEWS | NEUROSCIENCE  VOLUME 10 | MAY 2009 | 349Nature Reviews | Neuroscience

Vertical position

Load force

Grip force

0.2s

Se
ns

or
y 

pr
ed

ic
tio

ns
Ta

ct
ile

 s
ig

na
ls

Comparison
Mismatches trigger
corrective actions

UnloadLoadReach Lift Hold

Digits
contact
object

Object
lifts off
surface

Object
approaches
goal height

Object
contacts
surface

Digits
release
object

FA-I

SA-I

FA-II

SA-II

SA-II

Transient mechanical events 
 Making and breaking 

  contact between hand-held 
  objects and other objects
 Weight information 

  (indirect at lift-off)

Contact responses
 Contact timing
 Contact sites on digit 
 Direction of contact force
 Friction information
 Local shape at grasp sites

Release responses
 Breaking contact between 

  digit and object

M
ot

or
 c

om
m

an
ds

ReplaceAction-phase controllers
(action phases)

Task subgoals
(control points)

Predicted tactile
subgoal events

Actual tactile
subgoal events

a

b

Ensembles 
of tactile 
afferents
encode:   

Grip 
force

Vertical movement
Load 
force

forces than the SA-I or the FA-I populations, because they 
innervate the fingertip more sparsely103 (TABLE 1).

Occasionally, frictional slips occur that rapidly shift 
the object load from the slipping digit to the other 

digits engaged in gripping the object. Such load shifts, 
which are reliably signalled by FA-I afferents2,96, trigger 
a phase-appropriate corrective action that results in a 
lasting update of grip-to-load force ratios at the engaged 

 Box 3 | Sensorimotor control points in a prototypic object manipulation task

Manipulation tasks are characterized by a sequence of action phases separated by contact events that define task 

subgoals. Consider the task of grasping an object, lifting it from a table, holding it in the air and then replacing it (see part 

a of the figure)63. The goal of the initial reach phase is marked by the digits contacting the object and the goal of the 

subsequent load phase is marked by the breaking of contact between the object and the support surface. These  

and subsequent contact events correspond to discrete sensory events that are characterized by specific afferent neural 

signatures in the tactile modality (part b) and often in the auditory and visual modalities (not shown). Such signatures 

specify the functional goals of successive action phases. In addition to generating motor commands, each action-phase 

controller predicts the sensory events that signify subgoal attainment. Thus, the brain can monitor task progression and 

produce corrective actions if mismatches are detected. Recordings of tactile afferent signals in single neurons of the 

human median nerve during the lift and replace task11 have shown that there are distinct discharges from the fingertips at 

four points corresponding to subgoal events (part b): responses primarily in FA-I (fast-adapting type I) afferents when the 

object is contacted and released and responses in FA-II afferents related to the transient mechanical events that 

accompany the object lifting off and being replaced on the support surface. In addition to responses to distinct contact 

events, many SA-I (slow-adapting type I) and SA-II afferents discharge when static forces are applied to the object. Figure 

is modified, with permission, from REF. 5  (2008) Academic Press.  
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forces than the SA-I or the FA-I populations, because they 
innervate the fingertip more sparsely103 (TABLE 1).

Occasionally, frictional slips occur that rapidly shift 
the object load from the slipping digit to the other 

digits engaged in gripping the object. Such load shifts, 
which are reliably signalled by FA-I afferents2,96, trigger 
a phase-appropriate corrective action that results in a 
lasting update of grip-to-load force ratios at the engaged 

 Box 3 | Sensorimotor control points in a prototypic object manipulation task

Manipulation tasks are characterized by a sequence of action phases separated by contact events that define task 

subgoals. Consider the task of grasping an object, lifting it from a table, holding it in the air and then replacing it (see part 

a of the figure)63. The goal of the initial reach phase is marked by the digits contacting the object and the goal of the 

subsequent load phase is marked by the breaking of contact between the object and the support surface. These  

and subsequent contact events correspond to discrete sensory events that are characterized by specific afferent neural 

signatures in the tactile modality (part b) and often in the auditory and visual modalities (not shown). Such signatures 

specify the functional goals of successive action phases. In addition to generating motor commands, each action-phase 

controller predicts the sensory events that signify subgoal attainment. Thus, the brain can monitor task progression and 

produce corrective actions if mismatches are detected. Recordings of tactile afferent signals in single neurons of the 

human median nerve during the lift and replace task11 have shown that there are distinct discharges from the fingertips at 

four points corresponding to subgoal events (part b): responses primarily in FA-I (fast-adapting type I) afferents when the 

object is contacted and released and responses in FA-II afferents related to the transient mechanical events that 

accompany the object lifting off and being replaced on the support surface. In addition to responses to distinct contact 

events, many SA-I (slow-adapting type I) and SA-II afferents discharge when static forces are applied to the object. Figure 

is modified, with permission, from REF. 5  (2008) Academic Press.  
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forces than the SA-I or the FA-I populations, because they 
innervate the fingertip more sparsely103 (TABLE 1).

Occasionally, frictional slips occur that rapidly shift 
the object load from the slipping digit to the other 

digits engaged in gripping the object. Such load shifts, 
which are reliably signalled by FA-I afferents2,96, trigger 
a phase-appropriate corrective action that results in a 
lasting update of grip-to-load force ratios at the engaged 

 Box 3 | Sensorimotor control points in a prototypic object manipulation task

Manipulation tasks are characterized by a sequence of action phases separated by contact events that define task 

subgoals. Consider the task of grasping an object, lifting it from a table, holding it in the air and then replacing it (see part 

a of the figure)63. The goal of the initial reach phase is marked by the digits contacting the object and the goal of the 

subsequent load phase is marked by the breaking of contact between the object and the support surface. These  

and subsequent contact events correspond to discrete sensory events that are characterized by specific afferent neural 

signatures in the tactile modality (part b) and often in the auditory and visual modalities (not shown). Such signatures 

specify the functional goals of successive action phases. In addition to generating motor commands, each action-phase 

controller predicts the sensory events that signify subgoal attainment. Thus, the brain can monitor task progression and 

produce corrective actions if mismatches are detected. Recordings of tactile afferent signals in single neurons of the 

human median nerve during the lift and replace task11 have shown that there are distinct discharges from the fingertips at 

four points corresponding to subgoal events (part b): responses primarily in FA-I (fast-adapting type I) afferents when the 

object is contacted and released and responses in FA-II afferents related to the transient mechanical events that 

accompany the object lifting off and being replaced on the support surface. In addition to responses to distinct contact 

events, many SA-I (slow-adapting type I) and SA-II afferents discharge when static forces are applied to the object. Figure 

is modified, with permission, from REF. 5  (2008) Academic Press.  
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forces than the SA-I or the FA-I populations, because they 
innervate the fingertip more sparsely103 (TABLE 1).

Occasionally, frictional slips occur that rapidly shift 
the object load from the slipping digit to the other 

digits engaged in gripping the object. Such load shifts, 
which are reliably signalled by FA-I afferents2,96, trigger 
a phase-appropriate corrective action that results in a 
lasting update of grip-to-load force ratios at the engaged 

 Box 3 | Sensorimotor control points in a prototypic object manipulation task

Manipulation tasks are characterized by a sequence of action phases separated by contact events that define task 

subgoals. Consider the task of grasping an object, lifting it from a table, holding it in the air and then replacing it (see part 

a of the figure)63. The goal of the initial reach phase is marked by the digits contacting the object and the goal of the 

subsequent load phase is marked by the breaking of contact between the object and the support surface. These  

and subsequent contact events correspond to discrete sensory events that are characterized by specific afferent neural 

signatures in the tactile modality (part b) and often in the auditory and visual modalities (not shown). Such signatures 

specify the functional goals of successive action phases. In addition to generating motor commands, each action-phase 

controller predicts the sensory events that signify subgoal attainment. Thus, the brain can monitor task progression and 

produce corrective actions if mismatches are detected. Recordings of tactile afferent signals in single neurons of the 

human median nerve during the lift and replace task11 have shown that there are distinct discharges from the fingertips at 

four points corresponding to subgoal events (part b): responses primarily in FA-I (fast-adapting type I) afferents when the 

object is contacted and released and responses in FA-II afferents related to the transient mechanical events that 

accompany the object lifting off and being replaced on the support surface. In addition to responses to distinct contact 
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Occasionally, frictional slips occur that rapidly shift 
the object load from the slipping digit to the other 

digits engaged in gripping the object. Such load shifts, 
which are reliably signalled by FA-I afferents2,96, trigger 
a phase-appropriate corrective action that results in a 
lasting update of grip-to-load force ratios at the engaged 
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subsequent load phase is marked by the breaking of contact between the object and the support surface. These  

and subsequent contact events correspond to discrete sensory events that are characterized by specific afferent neural 

signatures in the tactile modality (part b) and often in the auditory and visual modalities (not shown). Such signatures 

specify the functional goals of successive action phases. In addition to generating motor commands, each action-phase 

controller predicts the sensory events that signify subgoal attainment. Thus, the brain can monitor task progression and 

produce corrective actions if mismatches are detected. Recordings of tactile afferent signals in single neurons of the 

human median nerve during the lift and replace task11 have shown that there are distinct discharges from the fingertips at 

four points corresponding to subgoal events (part b): responses primarily in FA-I (fast-adapting type I) afferents when the 
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accompany the object lifting off and being replaced on the support surface. In addition to responses to distinct contact 
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Table 1 | Tactile sensory innervation of the hand

Afferent type  
(and response properties)

Receptive field  
(and probe)

Density  
(afferents per cm2)

FA-I (fast-adapting type I) 
Meissner endings

• Sensitive to dynamic skin 
deformation of relatively 
high frequency (~5–50 Hz)

• Insensitive to static force
• Transmit enhanced 

representations of local 
spatial discontinuities 
(e.g., edge contours and 
Braille-like stimuli)

SA-I (slowly-adapting type I) 
Merkel endings

• Sensitive to low-frequency 
dynamic skin deformations 
(<~5 Hz)

• Sensitive to static force
• Transmit enhanced 

representations of local 
spatial discontinuities

FA-II (fast-adapting type II) 
Pacini ending

• Extremely sensitive to 
mechanical transients and 
high-frequency vibrations 
(~40–400 Hz) propagating 
through tissues

• Insensitive to static force
• Respond to distant events 

acting on hand-held objects

SA-II (slowly-adapting type II) 
Ruffini-like endings

• Low dynamic sensitivity
• Sensitive to static force
• Sense tension in dermal and 

subcutaneous collagenous 
fibre strands

• Can fire in the absence 
of externally applied 
stimulation and respond to 
remotely applied stretching 
of the skin

Data from REFS 6,20.
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Action-phase controller
A learned sensorimotor 
‘control policy’ that uses 
specific sensory information 
and sensory predictions to 
generate motor commands  
to attain a sensory goal.

Sensorimotor control point
A planned contact event in 
which predicted and actual 
sensory signals are compared 
to assess the outcome of an 
executed action-phase 
controller.

largely subconsciously and very rapidly, the use of tac-
tile signals differs across tasks and task phases, and the 
forces that are involved in manipulation typically differ 
from the forces that are present during gentle touch.

The information that a mechanoreceptive affer-
ent conveys depends on several factors, including the 
branching of the nerve terminal, the mechanical proper-
ties of the end organs of the nerve endings, the anchor-
ing of the end organs in the surrounding tissues and, not 
least, the overall mechanical deformational properties of 
these tissues. Thus, the distributed patterns of stresses 
and strains that develop in the skin and the underlying 
tissues when a fingertip interacts with an object affect 
both afferents that terminate in contact areas and affer-
ents that terminate remotely21–23. This implies that the 

actual receptive field of an afferent can be considerably 
larger than the classical cutaneous receptive field deline-
ated by lightly touching the hand with a  pointed object 
(TABLE 1). Consequently, models of neural encoding of 
tactile stimuli that visualize the receptor mosaic as a 
two-dimensional pixel-like array of densely localized 
sensors distributed over a flat skin surface15–17 are not 
viable for predicting tactile signalling in manipulation 
tasks. Importantly, the functional overlap of large recep-
tive fields can enhance rather than degrade the encoding 
of spatiotemporal information24,25.

Owing to the mechanical properties of the fingertip, the 
mapping between fingertip events and afferent responses 
is highly complex16,22,23. Simply looking at how the  
pattern of stress develops in the contact area when  
the fingertip contacts a flat surface demonstrates this 
complexity (BOX 2). Researchers have attempted to model 
the mechanics of the fingertip while incorporating its 
composite material properties, with the goal of predict-
ing the responses of populations of tactile afferents to 
various fingertip stimuli26–34. However, no model yet 
possesses the level of realism that satisfies this goal.

Contact events and action goals in manipulation
Dexterous manipulation tasks can be broken down 
into a series of action phases, usually delimited by the 
mechanical events that represent subgoals of the task 
(see REFS 5,35 for details). For example, when picking 
up a hammer to strike a nail, contact between the digits 
and the handle marks the end of the reach phase; the 
braking of contact between the hammer and the support 
surface marks the end of the load phase; and contact 
between the hammer head and the nail marks the end of 
the swing phase. Mechanical events involved in manipu-
lation generate specific patterns of activity in the tactile 
afferents and often also in auditory and visual afferents. 
Thus, manipulation tasks can be specified as a sequence 
of specific sensory events linked to subgoals.

To achieve these subgoals the brain has to select and 
execute appropriate action-phase controllers5 (BOX 3). In 
order to accurately predict the required motor output 
and associated sensory events, action-phase control-
lers must have information about the properties of the 
objects involved and the current state of the motor appa-
ratus. If predictions are erroneous, corrective actions can 
be launched based on real-time sensory information. 
However, because of the long time delays in sensorimotor 
control loops engaged in corrective actions (~100 ms), 
dexterous manipulation is not possible unless predictions 
are accurate5. In order to smoothly link action phases, 
the predicted terminal sensory state of the active con-
troller could be used as the initial state by the controller 
responsible for the next action phase. If the brain relied 
on peripheral afferent information to obtain this state 
information, stuttering phase transitions would occur.

The comparison of predicted and actual sensory sig-
nals can be used to monitor task progression and detect 
performance errors (BOX 3). Contact events, which denote 
completion of action goals, represent crucial sensorimotor 
control points because they give rise to discrete sensory 
signals in one or more modalities. If an error is detected, 
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(see REFS 5,35 for details). For example, when picking 
up a hammer to strike a nail, contact between the digits 
and the handle marks the end of the reach phase; the 
braking of contact between the hammer and the support 
surface marks the end of the load phase; and contact 
between the hammer head and the nail marks the end of 
the swing phase. Mechanical events involved in manipu-
lation generate specific patterns of activity in the tactile 
afferents and often also in auditory and visual afferents. 
Thus, manipulation tasks can be specified as a sequence 
of specific sensory events linked to subgoals.

To achieve these subgoals the brain has to select and 
execute appropriate action-phase controllers5 (BOX 3). In 
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The information that a mechanoreceptive affer-
ent conveys depends on several factors, including the 
branching of the nerve terminal, the mechanical proper-
ties of the end organs of the nerve endings, the anchor-
ing of the end organs in the surrounding tissues and, not 
least, the overall mechanical deformational properties of 
these tissues. Thus, the distributed patterns of stresses 
and strains that develop in the skin and the underlying 
tissues when a fingertip interacts with an object affect 
both afferents that terminate in contact areas and affer-
ents that terminate remotely21–23. This implies that the 

actual receptive field of an afferent can be considerably 
larger than the classical cutaneous receptive field deline-
ated by lightly touching the hand with a  pointed object 
(TABLE 1). Consequently, models of neural encoding of 
tactile stimuli that visualize the receptor mosaic as a 
two-dimensional pixel-like array of densely localized 
sensors distributed over a flat skin surface15–17 are not 
viable for predicting tactile signalling in manipulation 
tasks. Importantly, the functional overlap of large recep-
tive fields can enhance rather than degrade the encoding 
of spatiotemporal information24,25.

Owing to the mechanical properties of the fingertip, the 
mapping between fingertip events and afferent responses 
is highly complex16,22,23. Simply looking at how the  
pattern of stress develops in the contact area when  
the fingertip contacts a flat surface demonstrates this 
complexity (BOX 2). Researchers have attempted to model 
the mechanics of the fingertip while incorporating its 
composite material properties, with the goal of predict-
ing the responses of populations of tactile afferents to 
various fingertip stimuli26–34. However, no model yet 
possesses the level of realism that satisfies this goal.

Contact events and action goals in manipulation
Dexterous manipulation tasks can be broken down 
into a series of action phases, usually delimited by the 
mechanical events that represent subgoals of the task 
(see REFS 5,35 for details). For example, when picking 
up a hammer to strike a nail, contact between the digits 
and the handle marks the end of the reach phase; the 
braking of contact between the hammer and the support 
surface marks the end of the load phase; and contact 
between the hammer head and the nail marks the end of 
the swing phase. Mechanical events involved in manipu-
lation generate specific patterns of activity in the tactile 
afferents and often also in auditory and visual afferents. 
Thus, manipulation tasks can be specified as a sequence 
of specific sensory events linked to subgoals.

To achieve these subgoals the brain has to select and 
execute appropriate action-phase controllers5 (BOX 3). In 
order to accurately predict the required motor output 
and associated sensory events, action-phase control-
lers must have information about the properties of the 
objects involved and the current state of the motor appa-
ratus. If predictions are erroneous, corrective actions can 
be launched based on real-time sensory information. 
However, because of the long time delays in sensorimotor 
control loops engaged in corrective actions (~100 ms), 
dexterous manipulation is not possible unless predictions 
are accurate5. In order to smoothly link action phases, 
the predicted terminal sensory state of the active con-
troller could be used as the initial state by the controller 
responsible for the next action phase. If the brain relied 
on peripheral afferent information to obtain this state 
information, stuttering phase transitions would occur.

The comparison of predicted and actual sensory sig-
nals can be used to monitor task progression and detect 
performance errors (BOX 3). Contact events, which denote 
completion of action goals, represent crucial sensorimotor 
control points because they give rise to discrete sensory 
signals in one or more modalities. If an error is detected, 
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Table 1 | Tactile sensory innervation of the hand

Afferent type  
(and response properties)

Receptive field  
(and probe)

Density  
(afferents per cm2)

FA-I (fast-adapting type I) 
Meissner endings

• Sensitive to dynamic skin 
deformation of relatively 
high frequency (~5–50 Hz)

• Insensitive to static force
• Transmit enhanced 

representations of local 
spatial discontinuities 
(e.g., edge contours and 
Braille-like stimuli)

SA-I (slowly-adapting type I) 
Merkel endings

• Sensitive to low-frequency 
dynamic skin deformations 
(<~5 Hz)

• Sensitive to static force
• Transmit enhanced 

representations of local 
spatial discontinuities

FA-II (fast-adapting type II) 
Pacini ending

• Extremely sensitive to 
mechanical transients and 
high-frequency vibrations 
(~40–400 Hz) propagating 
through tissues

• Insensitive to static force
• Respond to distant events 

acting on hand-held objects

SA-II (slowly-adapting type II) 
Ruffini-like endings

• Low dynamic sensitivity
• Sensitive to static force
• Sense tension in dermal and 

subcutaneous collagenous 
fibre strands

• Can fire in the absence 
of externally applied 
stimulation and respond to 
remotely applied stretching 
of the skin

Data from REFS 6,20.
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largely subconsciously and very rapidly, the use of tac-
tile signals differs across tasks and task phases, and the 
forces that are involved in manipulation typically differ 
from the forces that are present during gentle touch.

The information that a mechanoreceptive affer-
ent conveys depends on several factors, including the 
branching of the nerve terminal, the mechanical proper-
ties of the end organs of the nerve endings, the anchor-
ing of the end organs in the surrounding tissues and, not 
least, the overall mechanical deformational properties of 
these tissues. Thus, the distributed patterns of stresses 
and strains that develop in the skin and the underlying 
tissues when a fingertip interacts with an object affect 
both afferents that terminate in contact areas and affer-
ents that terminate remotely21–23. This implies that the 

actual receptive field of an afferent can be considerably 
larger than the classical cutaneous receptive field deline-
ated by lightly touching the hand with a  pointed object 
(TABLE 1). Consequently, models of neural encoding of 
tactile stimuli that visualize the receptor mosaic as a 
two-dimensional pixel-like array of densely localized 
sensors distributed over a flat skin surface15–17 are not 
viable for predicting tactile signalling in manipulation 
tasks. Importantly, the functional overlap of large recep-
tive fields can enhance rather than degrade the encoding 
of spatiotemporal information24,25.

Owing to the mechanical properties of the fingertip, the 
mapping between fingertip events and afferent responses 
is highly complex16,22,23. Simply looking at how the  
pattern of stress develops in the contact area when  
the fingertip contacts a flat surface demonstrates this 
complexity (BOX 2). Researchers have attempted to model 
the mechanics of the fingertip while incorporating its 
composite material properties, with the goal of predict-
ing the responses of populations of tactile afferents to 
various fingertip stimuli26–34. However, no model yet 
possesses the level of realism that satisfies this goal.

Contact events and action goals in manipulation
Dexterous manipulation tasks can be broken down 
into a series of action phases, usually delimited by the 
mechanical events that represent subgoals of the task 
(see REFS 5,35 for details). For example, when picking 
up a hammer to strike a nail, contact between the digits 
and the handle marks the end of the reach phase; the 
braking of contact between the hammer and the support 
surface marks the end of the load phase; and contact 
between the hammer head and the nail marks the end of 
the swing phase. Mechanical events involved in manipu-
lation generate specific patterns of activity in the tactile 
afferents and often also in auditory and visual afferents. 
Thus, manipulation tasks can be specified as a sequence 
of specific sensory events linked to subgoals.

To achieve these subgoals the brain has to select and 
execute appropriate action-phase controllers5 (BOX 3). In 
order to accurately predict the required motor output 
and associated sensory events, action-phase control-
lers must have information about the properties of the 
objects involved and the current state of the motor appa-
ratus. If predictions are erroneous, corrective actions can 
be launched based on real-time sensory information. 
However, because of the long time delays in sensorimotor 
control loops engaged in corrective actions (~100 ms), 
dexterous manipulation is not possible unless predictions 
are accurate5. In order to smoothly link action phases, 
the predicted terminal sensory state of the active con-
troller could be used as the initial state by the controller 
responsible for the next action phase. If the brain relied 
on peripheral afferent information to obtain this state 
information, stuttering phase transitions would occur.

The comparison of predicted and actual sensory sig-
nals can be used to monitor task progression and detect 
performance errors (BOX 3). Contact events, which denote 
completion of action goals, represent crucial sensorimotor 
control points because they give rise to discrete sensory 
signals in one or more modalities. If an error is detected, 
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(e.g., edge contours and 
Braille-like stimuli)

SA-I (slowly-adapting type I) 
Merkel endings

• Sensitive to low-frequency 
dynamic skin deformations 
(<~5 Hz)

• Sensitive to static force
• Transmit enhanced 

representations of local 
spatial discontinuities

FA-II (fast-adapting type II) 
Pacini ending

• Extremely sensitive to 
mechanical transients and 
high-frequency vibrations 
(~40–400 Hz) propagating 
through tissues

• Insensitive to static force
• Respond to distant events 

acting on hand-held objects

SA-II (slowly-adapting type II) 
Ruffini-like endings

• Low dynamic sensitivity
• Sensitive to static force
• Sense tension in dermal and 

subcutaneous collagenous 
fibre strands

• Can fire in the absence 
of externally applied 
stimulation and respond to 
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largely subconsciously and very rapidly, the use of tac-
tile signals differs across tasks and task phases, and the 
forces that are involved in manipulation typically differ 
from the forces that are present during gentle touch.

The information that a mechanoreceptive affer-
ent conveys depends on several factors, including the 
branching of the nerve terminal, the mechanical proper-
ties of the end organs of the nerve endings, the anchor-
ing of the end organs in the surrounding tissues and, not 
least, the overall mechanical deformational properties of 
these tissues. Thus, the distributed patterns of stresses 
and strains that develop in the skin and the underlying 
tissues when a fingertip interacts with an object affect 
both afferents that terminate in contact areas and affer-
ents that terminate remotely21–23. This implies that the 

actual receptive field of an afferent can be considerably 
larger than the classical cutaneous receptive field deline-
ated by lightly touching the hand with a  pointed object 
(TABLE 1). Consequently, models of neural encoding of 
tactile stimuli that visualize the receptor mosaic as a 
two-dimensional pixel-like array of densely localized 
sensors distributed over a flat skin surface15–17 are not 
viable for predicting tactile signalling in manipulation 
tasks. Importantly, the functional overlap of large recep-
tive fields can enhance rather than degrade the encoding 
of spatiotemporal information24,25.

Owing to the mechanical properties of the fingertip, the 
mapping between fingertip events and afferent responses 
is highly complex16,22,23. Simply looking at how the  
pattern of stress develops in the contact area when  
the fingertip contacts a flat surface demonstrates this 
complexity (BOX 2). Researchers have attempted to model 
the mechanics of the fingertip while incorporating its 
composite material properties, with the goal of predict-
ing the responses of populations of tactile afferents to 
various fingertip stimuli26–34. However, no model yet 
possesses the level of realism that satisfies this goal.

Contact events and action goals in manipulation
Dexterous manipulation tasks can be broken down 
into a series of action phases, usually delimited by the 
mechanical events that represent subgoals of the task 
(see REFS 5,35 for details). For example, when picking 
up a hammer to strike a nail, contact between the digits 
and the handle marks the end of the reach phase; the 
braking of contact between the hammer and the support 
surface marks the end of the load phase; and contact 
between the hammer head and the nail marks the end of 
the swing phase. Mechanical events involved in manipu-
lation generate specific patterns of activity in the tactile 
afferents and often also in auditory and visual afferents. 
Thus, manipulation tasks can be specified as a sequence 
of specific sensory events linked to subgoals.

To achieve these subgoals the brain has to select and 
execute appropriate action-phase controllers5 (BOX 3). In 
order to accurately predict the required motor output 
and associated sensory events, action-phase control-
lers must have information about the properties of the 
objects involved and the current state of the motor appa-
ratus. If predictions are erroneous, corrective actions can 
be launched based on real-time sensory information. 
However, because of the long time delays in sensorimotor 
control loops engaged in corrective actions (~100 ms), 
dexterous manipulation is not possible unless predictions 
are accurate5. In order to smoothly link action phases, 
the predicted terminal sensory state of the active con-
troller could be used as the initial state by the controller 
responsible for the next action phase. If the brain relied 
on peripheral afferent information to obtain this state 
information, stuttering phase transitions would occur.

The comparison of predicted and actual sensory sig-
nals can be used to monitor task progression and detect 
performance errors (BOX 3). Contact events, which denote 
completion of action goals, represent crucial sensorimotor 
control points because they give rise to discrete sensory 
signals in one or more modalities. If an error is detected, 
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Table 1 | Tactile sensory innervation of the hand

Afferent type  
(and response properties)

Receptive field  
(and probe)

Density  
(afferents per cm2)

FA-I (fast-adapting type I) 
Meissner endings

• Sensitive to dynamic skin 
deformation of relatively 
high frequency (~5–50 Hz)

• Insensitive to static force
• Transmit enhanced 

representations of local 
spatial discontinuities 
(e.g., edge contours and 
Braille-like stimuli)

SA-I (slowly-adapting type I) 
Merkel endings

• Sensitive to low-frequency 
dynamic skin deformations 
(<~5 Hz)

• Sensitive to static force
• Transmit enhanced 

representations of local 
spatial discontinuities

FA-II (fast-adapting type II) 
Pacini ending

• Extremely sensitive to 
mechanical transients and 
high-frequency vibrations 
(~40–400 Hz) propagating 
through tissues

• Insensitive to static force
• Respond to distant events 

acting on hand-held objects

SA-II (slowly-adapting type II) 
Ruffini-like endings

• Low dynamic sensitivity
• Sensitive to static force
• Sense tension in dermal and 

subcutaneous collagenous 
fibre strands

• Can fire in the absence 
of externally applied 
stimulation and respond to 
remotely applied stretching 
of the skin
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largely subconsciously and very rapidly, the use of tac-
tile signals differs across tasks and task phases, and the 
forces that are involved in manipulation typically differ 
from the forces that are present during gentle touch.

The information that a mechanoreceptive affer-
ent conveys depends on several factors, including the 
branching of the nerve terminal, the mechanical proper-
ties of the end organs of the nerve endings, the anchor-
ing of the end organs in the surrounding tissues and, not 
least, the overall mechanical deformational properties of 
these tissues. Thus, the distributed patterns of stresses 
and strains that develop in the skin and the underlying 
tissues when a fingertip interacts with an object affect 
both afferents that terminate in contact areas and affer-
ents that terminate remotely21–23. This implies that the 

actual receptive field of an afferent can be considerably 
larger than the classical cutaneous receptive field deline-
ated by lightly touching the hand with a  pointed object 
(TABLE 1). Consequently, models of neural encoding of 
tactile stimuli that visualize the receptor mosaic as a 
two-dimensional pixel-like array of densely localized 
sensors distributed over a flat skin surface15–17 are not 
viable for predicting tactile signalling in manipulation 
tasks. Importantly, the functional overlap of large recep-
tive fields can enhance rather than degrade the encoding 
of spatiotemporal information24,25.

Owing to the mechanical properties of the fingertip, the 
mapping between fingertip events and afferent responses 
is highly complex16,22,23. Simply looking at how the  
pattern of stress develops in the contact area when  
the fingertip contacts a flat surface demonstrates this 
complexity (BOX 2). Researchers have attempted to model 
the mechanics of the fingertip while incorporating its 
composite material properties, with the goal of predict-
ing the responses of populations of tactile afferents to 
various fingertip stimuli26–34. However, no model yet 
possesses the level of realism that satisfies this goal.

Contact events and action goals in manipulation
Dexterous manipulation tasks can be broken down 
into a series of action phases, usually delimited by the 
mechanical events that represent subgoals of the task 
(see REFS 5,35 for details). For example, when picking 
up a hammer to strike a nail, contact between the digits 
and the handle marks the end of the reach phase; the 
braking of contact between the hammer and the support 
surface marks the end of the load phase; and contact 
between the hammer head and the nail marks the end of 
the swing phase. Mechanical events involved in manipu-
lation generate specific patterns of activity in the tactile 
afferents and often also in auditory and visual afferents. 
Thus, manipulation tasks can be specified as a sequence 
of specific sensory events linked to subgoals.

To achieve these subgoals the brain has to select and 
execute appropriate action-phase controllers5 (BOX 3). In 
order to accurately predict the required motor output 
and associated sensory events, action-phase control-
lers must have information about the properties of the 
objects involved and the current state of the motor appa-
ratus. If predictions are erroneous, corrective actions can 
be launched based on real-time sensory information. 
However, because of the long time delays in sensorimotor 
control loops engaged in corrective actions (~100 ms), 
dexterous manipulation is not possible unless predictions 
are accurate5. In order to smoothly link action phases, 
the predicted terminal sensory state of the active con-
troller could be used as the initial state by the controller 
responsible for the next action phase. If the brain relied 
on peripheral afferent information to obtain this state 
information, stuttering phase transitions would occur.

The comparison of predicted and actual sensory sig-
nals can be used to monitor task progression and detect 
performance errors (BOX 3). Contact events, which denote 
completion of action goals, represent crucial sensorimotor 
control points because they give rise to discrete sensory 
signals in one or more modalities. If an error is detected, 
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Afferent type  
(and response properties)
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FA-I (fast-adapting type I) 
Meissner endings

• Sensitive to dynamic skin 
deformation of relatively 
high frequency (~5–50 Hz)

• Insensitive to static force
• Transmit enhanced 

representations of local 
spatial discontinuities 
(e.g., edge contours and 
Braille-like stimuli)

SA-I (slowly-adapting type I) 
Merkel endings

• Sensitive to low-frequency 
dynamic skin deformations 
(<~5 Hz)

• Sensitive to static force
• Transmit enhanced 

representations of local 
spatial discontinuities

FA-II (fast-adapting type II) 
Pacini ending

• Extremely sensitive to 
mechanical transients and 
high-frequency vibrations 
(~40–400 Hz) propagating 
through tissues

• Insensitive to static force
• Respond to distant events 

acting on hand-held objects
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largely subconsciously and very rapidly, the use of tac-
tile signals differs across tasks and task phases, and the 
forces that are involved in manipulation typically differ 
from the forces that are present during gentle touch.

The information that a mechanoreceptive affer-
ent conveys depends on several factors, including the 
branching of the nerve terminal, the mechanical proper-
ties of the end organs of the nerve endings, the anchor-
ing of the end organs in the surrounding tissues and, not 
least, the overall mechanical deformational properties of 
these tissues. Thus, the distributed patterns of stresses 
and strains that develop in the skin and the underlying 
tissues when a fingertip interacts with an object affect 
both afferents that terminate in contact areas and affer-
ents that terminate remotely21–23. This implies that the 

actual receptive field of an afferent can be considerably 
larger than the classical cutaneous receptive field deline-
ated by lightly touching the hand with a  pointed object 
(TABLE 1). Consequently, models of neural encoding of 
tactile stimuli that visualize the receptor mosaic as a 
two-dimensional pixel-like array of densely localized 
sensors distributed over a flat skin surface15–17 are not 
viable for predicting tactile signalling in manipulation 
tasks. Importantly, the functional overlap of large recep-
tive fields can enhance rather than degrade the encoding 
of spatiotemporal information24,25.

Owing to the mechanical properties of the fingertip, the 
mapping between fingertip events and afferent responses 
is highly complex16,22,23. Simply looking at how the  
pattern of stress develops in the contact area when  
the fingertip contacts a flat surface demonstrates this 
complexity (BOX 2). Researchers have attempted to model 
the mechanics of the fingertip while incorporating its 
composite material properties, with the goal of predict-
ing the responses of populations of tactile afferents to 
various fingertip stimuli26–34. However, no model yet 
possesses the level of realism that satisfies this goal.

Contact events and action goals in manipulation
Dexterous manipulation tasks can be broken down 
into a series of action phases, usually delimited by the 
mechanical events that represent subgoals of the task 
(see REFS 5,35 for details). For example, when picking 
up a hammer to strike a nail, contact between the digits 
and the handle marks the end of the reach phase; the 
braking of contact between the hammer and the support 
surface marks the end of the load phase; and contact 
between the hammer head and the nail marks the end of 
the swing phase. Mechanical events involved in manipu-
lation generate specific patterns of activity in the tactile 
afferents and often also in auditory and visual afferents. 
Thus, manipulation tasks can be specified as a sequence 
of specific sensory events linked to subgoals.

To achieve these subgoals the brain has to select and 
execute appropriate action-phase controllers5 (BOX 3). In 
order to accurately predict the required motor output 
and associated sensory events, action-phase control-
lers must have information about the properties of the 
objects involved and the current state of the motor appa-
ratus. If predictions are erroneous, corrective actions can 
be launched based on real-time sensory information. 
However, because of the long time delays in sensorimotor 
control loops engaged in corrective actions (~100 ms), 
dexterous manipulation is not possible unless predictions 
are accurate5. In order to smoothly link action phases, 
the predicted terminal sensory state of the active con-
troller could be used as the initial state by the controller 
responsible for the next action phase. If the brain relied 
on peripheral afferent information to obtain this state 
information, stuttering phase transitions would occur.

The comparison of predicted and actual sensory sig-
nals can be used to monitor task progression and detect 
performance errors (BOX 3). Contact events, which denote 
completion of action goals, represent crucial sensorimotor 
control points because they give rise to discrete sensory 
signals in one or more modalities. If an error is detected, 
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Table 1 | Tactile sensory innervation of the hand

Afferent type  
(and response properties)

Receptive field  
(and probe)

Density  
(afferents per cm2)

FA-I (fast-adapting type I) 
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high frequency (~5–50 Hz)
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representations of local 
spatial discontinuities 
(e.g., edge contours and 
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SA-I (slowly-adapting type I) 
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• Sensitive to low-frequency 
dynamic skin deformations 
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(~40–400 Hz) propagating 
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SA-II (slowly-adapting type II) 
Ruffini-like endings

• Low dynamic sensitivity
• Sensitive to static force
• Sense tension in dermal and 

subcutaneous collagenous 
fibre strands

• Can fire in the absence 
of externally applied 
stimulation and respond to 
remotely applied stretching 
of the skin

Data from REFS 6,20.
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largely subconsciously and very rapidly, the use of tac-
tile signals differs across tasks and task phases, and the 
forces that are involved in manipulation typically differ 
from the forces that are present during gentle touch.

The information that a mechanoreceptive affer-
ent conveys depends on several factors, including the 
branching of the nerve terminal, the mechanical proper-
ties of the end organs of the nerve endings, the anchor-
ing of the end organs in the surrounding tissues and, not 
least, the overall mechanical deformational properties of 
these tissues. Thus, the distributed patterns of stresses 
and strains that develop in the skin and the underlying 
tissues when a fingertip interacts with an object affect 
both afferents that terminate in contact areas and affer-
ents that terminate remotely21–23. This implies that the 

actual receptive field of an afferent can be considerably 
larger than the classical cutaneous receptive field deline-
ated by lightly touching the hand with a  pointed object 
(TABLE 1). Consequently, models of neural encoding of 
tactile stimuli that visualize the receptor mosaic as a 
two-dimensional pixel-like array of densely localized 
sensors distributed over a flat skin surface15–17 are not 
viable for predicting tactile signalling in manipulation 
tasks. Importantly, the functional overlap of large recep-
tive fields can enhance rather than degrade the encoding 
of spatiotemporal information24,25.

Owing to the mechanical properties of the fingertip, the 
mapping between fingertip events and afferent responses 
is highly complex16,22,23. Simply looking at how the  
pattern of stress develops in the contact area when  
the fingertip contacts a flat surface demonstrates this 
complexity (BOX 2). Researchers have attempted to model 
the mechanics of the fingertip while incorporating its 
composite material properties, with the goal of predict-
ing the responses of populations of tactile afferents to 
various fingertip stimuli26–34. However, no model yet 
possesses the level of realism that satisfies this goal.

Contact events and action goals in manipulation
Dexterous manipulation tasks can be broken down 
into a series of action phases, usually delimited by the 
mechanical events that represent subgoals of the task 
(see REFS 5,35 for details). For example, when picking 
up a hammer to strike a nail, contact between the digits 
and the handle marks the end of the reach phase; the 
braking of contact between the hammer and the support 
surface marks the end of the load phase; and contact 
between the hammer head and the nail marks the end of 
the swing phase. Mechanical events involved in manipu-
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order to accurately predict the required motor output 
and associated sensory events, action-phase control-
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The comparison of predicted and actual sensory sig-
nals can be used to monitor task progression and detect 
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completion of action goals, represent crucial sensorimotor 
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signals in one or more modalities. If an error is detected, 
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forces than the SA-I or the FA-I populations, because they 
innervate the fingertip more sparsely103 (TABLE 1).

Occasionally, frictional slips occur that rapidly shift 
the object load from the slipping digit to the other 

digits engaged in gripping the object. Such load shifts, 
which are reliably signalled by FA-I afferents2,96, trigger 
a phase-appropriate corrective action that results in a 
lasting update of grip-to-load force ratios at the engaged 

 Box 3 | Sensorimotor control points in a prototypic object manipulation task

Manipulation tasks are characterized by a sequence of action phases separated by contact events that define task 

subgoals. Consider the task of grasping an object, lifting it from a table, holding it in the air and then replacing it (see part 

a of the figure)63. The goal of the initial reach phase is marked by the digits contacting the object and the goal of the 

subsequent load phase is marked by the breaking of contact between the object and the support surface. These  

and subsequent contact events correspond to discrete sensory events that are characterized by specific afferent neural 

signatures in the tactile modality (part b) and often in the auditory and visual modalities (not shown). Such signatures 

specify the functional goals of successive action phases. In addition to generating motor commands, each action-phase 

controller predicts the sensory events that signify subgoal attainment. Thus, the brain can monitor task progression and 

produce corrective actions if mismatches are detected. Recordings of tactile afferent signals in single neurons of the 

human median nerve during the lift and replace task11 have shown that there are distinct discharges from the fingertips at 

four points corresponding to subgoal events (part b): responses primarily in FA-I (fast-adapting type I) afferents when the 

object is contacted and released and responses in FA-II afferents related to the transient mechanical events that 

accompany the object lifting off and being replaced on the support surface. In addition to responses to distinct contact 

events, many SA-I (slow-adapting type I) and SA-II afferents discharge when static forces are applied to the object. Figure 

is modified, with permission, from REF. 5  (2008) Academic Press.  
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subsequent load phase is marked by the breaking of contact between the object and the support surface. These  

and subsequent contact events correspond to discrete sensory events that are characterized by specific afferent neural 

signatures in the tactile modality (part b) and often in the auditory and visual modalities (not shown). Such signatures 

specify the functional goals of successive action phases. In addition to generating motor commands, each action-phase 

controller predicts the sensory events that signify subgoal attainment. Thus, the brain can monitor task progression and 

produce corrective actions if mismatches are detected. Recordings of tactile afferent signals in single neurons of the 

human median nerve during the lift and replace task11 have shown that there are distinct discharges from the fingertips at 

four points corresponding to subgoal events (part b): responses primarily in FA-I (fast-adapting type I) afferents when the 

object is contacted and released and responses in FA-II afferents related to the transient mechanical events that 

accompany the object lifting off and being replaced on the support surface. In addition to responses to distinct contact 
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TABLE I
MECHANORECEPTORS IN GLABROUS HUMAN SKIN [4], [6]–[8].

Mechanoreceptor Receptive Field (mm2) Response (Hz)
SA-I (Merkel Disc) 2-4 0-5

SA-II (Ruffini Endings) >20 0-5
FA-I (Meissner Corpuscle) 3-5 5-50
FA-II (Pacinian Corpuscle) >20 20-1000

fields, respectively. Once contact has been detected, humans
increase their grasp force to the target level, using both pre-
existing knowledge about the object and tactile information
gathered during the interaction. This loading process is regu-
lated largely by the response of the SA-I (Merkel) afferents,
which are slowly-adapting with small receptive fields. The load
phase ends when the target grasp force is reached with a stable
hand posture.

Once the object is securely grasped, humans use their arm
muscles to lift up the object, hold it in the air, and possibly
transport it to a new location. Corrective actions (typically
increases in grip force) are applied during the lifting and
holding phases when the tactile feedback does not match the
expected result. Srinivasan et al. [5] showed that the FA-I
and FA-II signals are the primary sources of information for
detecting both fingertip slip and new object contact. Slip is of
critical importance for rejecting disturbances in the lifting and
holding phases. When it comes time to place the item back
on the table, contact between between the object and the table
must be detected to successfully transition to unloading. The
SA-I afferents are again important during unload to properly
set the object down before full release.

These tactile sensing capabilities and corrective reactions
enable humans to adeptly hold a very wide range of objects
without crushing or dropping them. Indeed, humans typically
apply a grip force that is only 10–40% more than the minimum
amount needed to avoid slip [4], thereby achieving the dual
goals of safety and efficiency.

B. Our Approach: Human-Inspired Robotic Grasp Control
Inspired by the fluidity of human grasp control, this article

presents a set of methods that enable a robot to delicately
and firmly grasp real-world objects. We assume that fingertip
placement as well as hand and body movements have already

been determined using non-contact sensors and appropriate
planners. We describe robotic sensing methods that use finger-
mounted pressure arrays and a hand-mounted accelerometer
to mimic the important tactile signals provided by human
FA-I, FA-II, and SA-I mechanoreceptors. Noticeably absent
in our approach are the SA-II mechanoreceptors, which are
known to respond to tangential loading such as skin stretch.
We omit this channel because our current experimental system
cannot measure such signals, though our approach could
be expanded to include them if they were available. The
three sensory channels that we construct allow us to create
a high-level robotic grasp controller that emulates human
tactile manipulation: in the words of Johansson and Flanagan,
our controller is “centered on mechanical events that mark
transitions between consecutive action phases that represent
subgoals of the overall task” [4]. As diagrammed in Fig. 2,
our approach separates robotic grasping into six discrete states:
Close, Load, Lift and Hold, Replace, Unload, and Open.

These states purposefully mirror those of human grasping,
although we have combined Lift and Hold because their
control responses are nearly identical for the hand. Each state
defines a set of rules for controlling a robotic gripper to
perform the specified behavior based on the tactile sensa-
tions it experiences. In addition to creating this approach to
robotic grasp control, we implemented our methods on the
standardized hardware and software of the Willow Garage PR2
robot; our goal was to enable it to perform two-fingered grasps
on typical household objects at human-like speeds, without
crushing or dropping them.

Section II summarizes previous work in the area of tactile
robotic grasping and substantiates the novelty of our approach.
Section III describes pertinent attributes of the PR2 platform,
while Section IV defines our robotic SA-I, FA-I, and FA-II
tactile channels and the low-level position and force control
strategies we created for the PR2’s high-impedance gripper.
Section V expounds on the control diagram of Fig. 2 by
carefully defining each control rule and state transition. As
described in Section VI, we validated our methods through
experiments with the PR2 and a large collection of everyday
objects under a variety of challenging test conditions. We
conclude the article and discuss our plans for future work in
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Fig. 2. The state diagram for our robotic grasp controller. State transitions occur only after specific tactile events are detected. The details of this controller
are presented in Sections IV and V. Constant-valued parameters, such as VCLOSE, are defined in Table II.
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TABLE I
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fields, respectively. Once contact has been detected, humans
increase their grasp force to the target level, using both pre-
existing knowledge about the object and tactile information
gathered during the interaction. This loading process is regu-
lated largely by the response of the SA-I (Merkel) afferents,
which are slowly-adapting with small receptive fields. The load
phase ends when the target grasp force is reached with a stable
hand posture.

Once the object is securely grasped, humans use their arm
muscles to lift up the object, hold it in the air, and possibly
transport it to a new location. Corrective actions (typically
increases in grip force) are applied during the lifting and
holding phases when the tactile feedback does not match the
expected result. Srinivasan et al. [5] showed that the FA-I
and FA-II signals are the primary sources of information for
detecting both fingertip slip and new object contact. Slip is of
critical importance for rejecting disturbances in the lifting and
holding phases. When it comes time to place the item back
on the table, contact between between the object and the table
must be detected to successfully transition to unloading. The
SA-I afferents are again important during unload to properly
set the object down before full release.

These tactile sensing capabilities and corrective reactions
enable humans to adeptly hold a very wide range of objects
without crushing or dropping them. Indeed, humans typically
apply a grip force that is only 10–40% more than the minimum
amount needed to avoid slip [4], thereby achieving the dual
goals of safety and efficiency.

B. Our Approach: Human-Inspired Robotic Grasp Control
Inspired by the fluidity of human grasp control, this article

presents a set of methods that enable a robot to delicately
and firmly grasp real-world objects. We assume that fingertip
placement as well as hand and body movements have already

been determined using non-contact sensors and appropriate
planners. We describe robotic sensing methods that use finger-
mounted pressure arrays and a hand-mounted accelerometer
to mimic the important tactile signals provided by human
FA-I, FA-II, and SA-I mechanoreceptors. Noticeably absent
in our approach are the SA-II mechanoreceptors, which are
known to respond to tangential loading such as skin stretch.
We omit this channel because our current experimental system
cannot measure such signals, though our approach could
be expanded to include them if they were available. The
three sensory channels that we construct allow us to create
a high-level robotic grasp controller that emulates human
tactile manipulation: in the words of Johansson and Flanagan,
our controller is “centered on mechanical events that mark
transitions between consecutive action phases that represent
subgoals of the overall task” [4]. As diagrammed in Fig. 2,
our approach separates robotic grasping into six discrete states:
Close, Load, Lift and Hold, Replace, Unload, and Open.

These states purposefully mirror those of human grasping,
although we have combined Lift and Hold because their
control responses are nearly identical for the hand. Each state
defines a set of rules for controlling a robotic gripper to
perform the specified behavior based on the tactile sensa-
tions it experiences. In addition to creating this approach to
robotic grasp control, we implemented our methods on the
standardized hardware and software of the Willow Garage PR2
robot; our goal was to enable it to perform two-fingered grasps
on typical household objects at human-like speeds, without
crushing or dropping them.

Section II summarizes previous work in the area of tactile
robotic grasping and substantiates the novelty of our approach.
Section III describes pertinent attributes of the PR2 platform,
while Section IV defines our robotic SA-I, FA-I, and FA-II
tactile channels and the low-level position and force control
strategies we created for the PR2’s high-impedance gripper.
Section V expounds on the control diagram of Fig. 2 by
carefully defining each control rule and state transition. As
described in Section VI, we validated our methods through
experiments with the PR2 and a large collection of everyday
objects under a variety of challenging test conditions. We
conclude the article and discuss our plans for future work in
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fields, respectively. Once contact has been detected, humans
increase their grasp force to the target level, using both pre-
existing knowledge about the object and tactile information
gathered during the interaction. This loading process is regu-
lated largely by the response of the SA-I (Merkel) afferents,
which are slowly-adapting with small receptive fields. The load
phase ends when the target grasp force is reached with a stable
hand posture.

Once the object is securely grasped, humans use their arm
muscles to lift up the object, hold it in the air, and possibly
transport it to a new location. Corrective actions (typically
increases in grip force) are applied during the lifting and
holding phases when the tactile feedback does not match the
expected result. Srinivasan et al. [5] showed that the FA-I
and FA-II signals are the primary sources of information for
detecting both fingertip slip and new object contact. Slip is of
critical importance for rejecting disturbances in the lifting and
holding phases. When it comes time to place the item back
on the table, contact between between the object and the table
must be detected to successfully transition to unloading. The
SA-I afferents are again important during unload to properly
set the object down before full release.

These tactile sensing capabilities and corrective reactions
enable humans to adeptly hold a very wide range of objects
without crushing or dropping them. Indeed, humans typically
apply a grip force that is only 10–40% more than the minimum
amount needed to avoid slip [4], thereby achieving the dual
goals of safety and efficiency.

B. Our Approach: Human-Inspired Robotic Grasp Control
Inspired by the fluidity of human grasp control, this article

presents a set of methods that enable a robot to delicately
and firmly grasp real-world objects. We assume that fingertip
placement as well as hand and body movements have already

been determined using non-contact sensors and appropriate
planners. We describe robotic sensing methods that use finger-
mounted pressure arrays and a hand-mounted accelerometer
to mimic the important tactile signals provided by human
FA-I, FA-II, and SA-I mechanoreceptors. Noticeably absent
in our approach are the SA-II mechanoreceptors, which are
known to respond to tangential loading such as skin stretch.
We omit this channel because our current experimental system
cannot measure such signals, though our approach could
be expanded to include them if they were available. The
three sensory channels that we construct allow us to create
a high-level robotic grasp controller that emulates human
tactile manipulation: in the words of Johansson and Flanagan,
our controller is “centered on mechanical events that mark
transitions between consecutive action phases that represent
subgoals of the overall task” [4]. As diagrammed in Fig. 2,
our approach separates robotic grasping into six discrete states:
Close, Load, Lift and Hold, Replace, Unload, and Open.

These states purposefully mirror those of human grasping,
although we have combined Lift and Hold because their
control responses are nearly identical for the hand. Each state
defines a set of rules for controlling a robotic gripper to
perform the specified behavior based on the tactile sensa-
tions it experiences. In addition to creating this approach to
robotic grasp control, we implemented our methods on the
standardized hardware and software of the Willow Garage PR2
robot; our goal was to enable it to perform two-fingered grasps
on typical household objects at human-like speeds, without
crushing or dropping them.

Section II summarizes previous work in the area of tactile
robotic grasping and substantiates the novelty of our approach.
Section III describes pertinent attributes of the PR2 platform,
while Section IV defines our robotic SA-I, FA-I, and FA-II
tactile channels and the low-level position and force control
strategies we created for the PR2’s high-impedance gripper.
Section V expounds on the control diagram of Fig. 2 by
carefully defining each control rule and state transition. As
described in Section VI, we validated our methods through
experiments with the PR2 and a large collection of everyday
objects under a variety of challenging test conditions. We
conclude the article and discuss our plans for future work in
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Fig. 2. The state diagram for our robotic grasp controller. State transitions occur only after specific tactile events are detected. The details of this controller
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TABLE I
MECHANORECEPTORS IN GLABROUS HUMAN SKIN [4], [6]–[8].

Mechanoreceptor Receptive Field (mm2) Response (Hz)
SA-I (Merkel Disc) 2-4 0-5

SA-II (Ruffini Endings) >20 0-5
FA-I (Meissner Corpuscle) 3-5 5-50
FA-II (Pacinian Corpuscle) >20 20-1000

fields, respectively. Once contact has been detected, humans
increase their grasp force to the target level, using both pre-
existing knowledge about the object and tactile information
gathered during the interaction. This loading process is regu-
lated largely by the response of the SA-I (Merkel) afferents,
which are slowly-adapting with small receptive fields. The load
phase ends when the target grasp force is reached with a stable
hand posture.

Once the object is securely grasped, humans use their arm
muscles to lift up the object, hold it in the air, and possibly
transport it to a new location. Corrective actions (typically
increases in grip force) are applied during the lifting and
holding phases when the tactile feedback does not match the
expected result. Srinivasan et al. [5] showed that the FA-I
and FA-II signals are the primary sources of information for
detecting both fingertip slip and new object contact. Slip is of
critical importance for rejecting disturbances in the lifting and
holding phases. When it comes time to place the item back
on the table, contact between between the object and the table
must be detected to successfully transition to unloading. The
SA-I afferents are again important during unload to properly
set the object down before full release.

These tactile sensing capabilities and corrective reactions
enable humans to adeptly hold a very wide range of objects
without crushing or dropping them. Indeed, humans typically
apply a grip force that is only 10–40% more than the minimum
amount needed to avoid slip [4], thereby achieving the dual
goals of safety and efficiency.

B. Our Approach: Human-Inspired Robotic Grasp Control
Inspired by the fluidity of human grasp control, this article

presents a set of methods that enable a robot to delicately
and firmly grasp real-world objects. We assume that fingertip
placement as well as hand and body movements have already

been determined using non-contact sensors and appropriate
planners. We describe robotic sensing methods that use finger-
mounted pressure arrays and a hand-mounted accelerometer
to mimic the important tactile signals provided by human
FA-I, FA-II, and SA-I mechanoreceptors. Noticeably absent
in our approach are the SA-II mechanoreceptors, which are
known to respond to tangential loading such as skin stretch.
We omit this channel because our current experimental system
cannot measure such signals, though our approach could
be expanded to include them if they were available. The
three sensory channels that we construct allow us to create
a high-level robotic grasp controller that emulates human
tactile manipulation: in the words of Johansson and Flanagan,
our controller is “centered on mechanical events that mark
transitions between consecutive action phases that represent
subgoals of the overall task” [4]. As diagrammed in Fig. 2,
our approach separates robotic grasping into six discrete states:
Close, Load, Lift and Hold, Replace, Unload, and Open.

These states purposefully mirror those of human grasping,
although we have combined Lift and Hold because their
control responses are nearly identical for the hand. Each state
defines a set of rules for controlling a robotic gripper to
perform the specified behavior based on the tactile sensa-
tions it experiences. In addition to creating this approach to
robotic grasp control, we implemented our methods on the
standardized hardware and software of the Willow Garage PR2
robot; our goal was to enable it to perform two-fingered grasps
on typical household objects at human-like speeds, without
crushing or dropping them.

Section II summarizes previous work in the area of tactile
robotic grasping and substantiates the novelty of our approach.
Section III describes pertinent attributes of the PR2 platform,
while Section IV defines our robotic SA-I, FA-I, and FA-II
tactile channels and the low-level position and force control
strategies we created for the PR2’s high-impedance gripper.
Section V expounds on the control diagram of Fig. 2 by
carefully defining each control rule and state transition. As
described in Section VI, we validated our methods through
experiments with the PR2 and a large collection of everyday
objects under a variety of challenging test conditions. We
conclude the article and discuss our plans for future work in
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Fig. 2. The state diagram for our robotic grasp controller. State transitions occur only after specific tactile events are detected. The details of this controller
are presented in Sections IV and V. Constant-valued parameters, such as VCLOSE, are defined in Table II.
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TABLE I
MECHANORECEPTORS IN GLABROUS HUMAN SKIN [4], [6]–[8].

Mechanoreceptor Receptive Field (mm2) Response (Hz)
SA-I (Merkel Disc) 2-4 0-5

SA-II (Ruffini Endings) >20 0-5
FA-I (Meissner Corpuscle) 3-5 5-50
FA-II (Pacinian Corpuscle) >20 20-1000

fields, respectively. Once contact has been detected, humans
increase their grasp force to the target level, using both pre-
existing knowledge about the object and tactile information
gathered during the interaction. This loading process is regu-
lated largely by the response of the SA-I (Merkel) afferents,
which are slowly-adapting with small receptive fields. The load
phase ends when the target grasp force is reached with a stable
hand posture.

Once the object is securely grasped, humans use their arm
muscles to lift up the object, hold it in the air, and possibly
transport it to a new location. Corrective actions (typically
increases in grip force) are applied during the lifting and
holding phases when the tactile feedback does not match the
expected result. Srinivasan et al. [5] showed that the FA-I
and FA-II signals are the primary sources of information for
detecting both fingertip slip and new object contact. Slip is of
critical importance for rejecting disturbances in the lifting and
holding phases. When it comes time to place the item back
on the table, contact between between the object and the table
must be detected to successfully transition to unloading. The
SA-I afferents are again important during unload to properly
set the object down before full release.

These tactile sensing capabilities and corrective reactions
enable humans to adeptly hold a very wide range of objects
without crushing or dropping them. Indeed, humans typically
apply a grip force that is only 10–40% more than the minimum
amount needed to avoid slip [4], thereby achieving the dual
goals of safety and efficiency.

B. Our Approach: Human-Inspired Robotic Grasp Control
Inspired by the fluidity of human grasp control, this article

presents a set of methods that enable a robot to delicately
and firmly grasp real-world objects. We assume that fingertip
placement as well as hand and body movements have already

been determined using non-contact sensors and appropriate
planners. We describe robotic sensing methods that use finger-
mounted pressure arrays and a hand-mounted accelerometer
to mimic the important tactile signals provided by human
FA-I, FA-II, and SA-I mechanoreceptors. Noticeably absent
in our approach are the SA-II mechanoreceptors, which are
known to respond to tangential loading such as skin stretch.
We omit this channel because our current experimental system
cannot measure such signals, though our approach could
be expanded to include them if they were available. The
three sensory channels that we construct allow us to create
a high-level robotic grasp controller that emulates human
tactile manipulation: in the words of Johansson and Flanagan,
our controller is “centered on mechanical events that mark
transitions between consecutive action phases that represent
subgoals of the overall task” [4]. As diagrammed in Fig. 2,
our approach separates robotic grasping into six discrete states:
Close, Load, Lift and Hold, Replace, Unload, and Open.

These states purposefully mirror those of human grasping,
although we have combined Lift and Hold because their
control responses are nearly identical for the hand. Each state
defines a set of rules for controlling a robotic gripper to
perform the specified behavior based on the tactile sensa-
tions it experiences. In addition to creating this approach to
robotic grasp control, we implemented our methods on the
standardized hardware and software of the Willow Garage PR2
robot; our goal was to enable it to perform two-fingered grasps
on typical household objects at human-like speeds, without
crushing or dropping them.

Section II summarizes previous work in the area of tactile
robotic grasping and substantiates the novelty of our approach.
Section III describes pertinent attributes of the PR2 platform,
while Section IV defines our robotic SA-I, FA-I, and FA-II
tactile channels and the low-level position and force control
strategies we created for the PR2’s high-impedance gripper.
Section V expounds on the control diagram of Fig. 2 by
carefully defining each control rule and state transition. As
described in Section VI, we validated our methods through
experiments with the PR2 and a large collection of everyday
objects under a variety of challenging test conditions. We
conclude the article and discuss our plans for future work in
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Fig. 2. The state diagram for our robotic grasp controller. State transitions occur only after specific tactile events are detected. The details of this controller
are presented in Sections IV and V. Constant-valued parameters, such as VCLOSE, are defined in Table II.
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TABLE I
MECHANORECEPTORS IN GLABROUS HUMAN SKIN [4], [6]–[8].

Mechanoreceptor Receptive Field (mm2) Response (Hz)
SA-I (Merkel Disc) 2-4 0-5

SA-II (Ruffini Endings) >20 0-5
FA-I (Meissner Corpuscle) 3-5 5-50
FA-II (Pacinian Corpuscle) >20 20-1000

fields, respectively. Once contact has been detected, humans
increase their grasp force to the target level, using both pre-
existing knowledge about the object and tactile information
gathered during the interaction. This loading process is regu-
lated largely by the response of the SA-I (Merkel) afferents,
which are slowly-adapting with small receptive fields. The load
phase ends when the target grasp force is reached with a stable
hand posture.

Once the object is securely grasped, humans use their arm
muscles to lift up the object, hold it in the air, and possibly
transport it to a new location. Corrective actions (typically
increases in grip force) are applied during the lifting and
holding phases when the tactile feedback does not match the
expected result. Srinivasan et al. [5] showed that the FA-I
and FA-II signals are the primary sources of information for
detecting both fingertip slip and new object contact. Slip is of
critical importance for rejecting disturbances in the lifting and
holding phases. When it comes time to place the item back
on the table, contact between between the object and the table
must be detected to successfully transition to unloading. The
SA-I afferents are again important during unload to properly
set the object down before full release.

These tactile sensing capabilities and corrective reactions
enable humans to adeptly hold a very wide range of objects
without crushing or dropping them. Indeed, humans typically
apply a grip force that is only 10–40% more than the minimum
amount needed to avoid slip [4], thereby achieving the dual
goals of safety and efficiency.

B. Our Approach: Human-Inspired Robotic Grasp Control
Inspired by the fluidity of human grasp control, this article

presents a set of methods that enable a robot to delicately
and firmly grasp real-world objects. We assume that fingertip
placement as well as hand and body movements have already

been determined using non-contact sensors and appropriate
planners. We describe robotic sensing methods that use finger-
mounted pressure arrays and a hand-mounted accelerometer
to mimic the important tactile signals provided by human
FA-I, FA-II, and SA-I mechanoreceptors. Noticeably absent
in our approach are the SA-II mechanoreceptors, which are
known to respond to tangential loading such as skin stretch.
We omit this channel because our current experimental system
cannot measure such signals, though our approach could
be expanded to include them if they were available. The
three sensory channels that we construct allow us to create
a high-level robotic grasp controller that emulates human
tactile manipulation: in the words of Johansson and Flanagan,
our controller is “centered on mechanical events that mark
transitions between consecutive action phases that represent
subgoals of the overall task” [4]. As diagrammed in Fig. 2,
our approach separates robotic grasping into six discrete states:
Close, Load, Lift and Hold, Replace, Unload, and Open.

These states purposefully mirror those of human grasping,
although we have combined Lift and Hold because their
control responses are nearly identical for the hand. Each state
defines a set of rules for controlling a robotic gripper to
perform the specified behavior based on the tactile sensa-
tions it experiences. In addition to creating this approach to
robotic grasp control, we implemented our methods on the
standardized hardware and software of the Willow Garage PR2
robot; our goal was to enable it to perform two-fingered grasps
on typical household objects at human-like speeds, without
crushing or dropping them.

Section II summarizes previous work in the area of tactile
robotic grasping and substantiates the novelty of our approach.
Section III describes pertinent attributes of the PR2 platform,
while Section IV defines our robotic SA-I, FA-I, and FA-II
tactile channels and the low-level position and force control
strategies we created for the PR2’s high-impedance gripper.
Section V expounds on the control diagram of Fig. 2 by
carefully defining each control rule and state transition. As
described in Section VI, we validated our methods through
experiments with the PR2 and a large collection of everyday
objects under a variety of challenging test conditions. We
conclude the article and discuss our plans for future work in
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Fig. 2. The state diagram for our robotic grasp controller. State transitions occur only after specific tactile events are detected. The details of this controller
are presented in Sections IV and V. Constant-valued parameters, such as VCLOSE, are defined in Table II.
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TABLE I
MECHANORECEPTORS IN GLABROUS HUMAN SKIN [4], [6]–[8].

Mechanoreceptor Receptive Field (mm2) Response (Hz)
SA-I (Merkel Disc) 2-4 0-5

SA-II (Ruffini Endings) >20 0-5
FA-I (Meissner Corpuscle) 3-5 5-50
FA-II (Pacinian Corpuscle) >20 20-1000

fields, respectively. Once contact has been detected, humans
increase their grasp force to the target level, using both pre-
existing knowledge about the object and tactile information
gathered during the interaction. This loading process is regu-
lated largely by the response of the SA-I (Merkel) afferents,
which are slowly-adapting with small receptive fields. The load
phase ends when the target grasp force is reached with a stable
hand posture.

Once the object is securely grasped, humans use their arm
muscles to lift up the object, hold it in the air, and possibly
transport it to a new location. Corrective actions (typically
increases in grip force) are applied during the lifting and
holding phases when the tactile feedback does not match the
expected result. Srinivasan et al. [5] showed that the FA-I
and FA-II signals are the primary sources of information for
detecting both fingertip slip and new object contact. Slip is of
critical importance for rejecting disturbances in the lifting and
holding phases. When it comes time to place the item back
on the table, contact between between the object and the table
must be detected to successfully transition to unloading. The
SA-I afferents are again important during unload to properly
set the object down before full release.

These tactile sensing capabilities and corrective reactions
enable humans to adeptly hold a very wide range of objects
without crushing or dropping them. Indeed, humans typically
apply a grip force that is only 10–40% more than the minimum
amount needed to avoid slip [4], thereby achieving the dual
goals of safety and efficiency.

B. Our Approach: Human-Inspired Robotic Grasp Control
Inspired by the fluidity of human grasp control, this article

presents a set of methods that enable a robot to delicately
and firmly grasp real-world objects. We assume that fingertip
placement as well as hand and body movements have already

been determined using non-contact sensors and appropriate
planners. We describe robotic sensing methods that use finger-
mounted pressure arrays and a hand-mounted accelerometer
to mimic the important tactile signals provided by human
FA-I, FA-II, and SA-I mechanoreceptors. Noticeably absent
in our approach are the SA-II mechanoreceptors, which are
known to respond to tangential loading such as skin stretch.
We omit this channel because our current experimental system
cannot measure such signals, though our approach could
be expanded to include them if they were available. The
three sensory channels that we construct allow us to create
a high-level robotic grasp controller that emulates human
tactile manipulation: in the words of Johansson and Flanagan,
our controller is “centered on mechanical events that mark
transitions between consecutive action phases that represent
subgoals of the overall task” [4]. As diagrammed in Fig. 2,
our approach separates robotic grasping into six discrete states:
Close, Load, Lift and Hold, Replace, Unload, and Open.

These states purposefully mirror those of human grasping,
although we have combined Lift and Hold because their
control responses are nearly identical for the hand. Each state
defines a set of rules for controlling a robotic gripper to
perform the specified behavior based on the tactile sensa-
tions it experiences. In addition to creating this approach to
robotic grasp control, we implemented our methods on the
standardized hardware and software of the Willow Garage PR2
robot; our goal was to enable it to perform two-fingered grasps
on typical household objects at human-like speeds, without
crushing or dropping them.

Section II summarizes previous work in the area of tactile
robotic grasping and substantiates the novelty of our approach.
Section III describes pertinent attributes of the PR2 platform,
while Section IV defines our robotic SA-I, FA-I, and FA-II
tactile channels and the low-level position and force control
strategies we created for the PR2’s high-impedance gripper.
Section V expounds on the control diagram of Fig. 2 by
carefully defining each control rule and state transition. As
described in Section VI, we validated our methods through
experiments with the PR2 and a large collection of everyday
objects under a variety of challenging test conditions. We
conclude the article and discuss our plans for future work in
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Fig. 2. The state diagram for our robotic grasp controller. State transitions occur only after specific tactile events are detected. The details of this controller
are presented in Sections IV and V. Constant-valued parameters, such as VCLOSE, are defined in Table II.
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TABLE I
MECHANORECEPTORS IN GLABROUS HUMAN SKIN [4], [6]–[8].

Mechanoreceptor Receptive Field (mm2) Response (Hz)
SA-I (Merkel Disc) 2-4 0-5

SA-II (Ruffini Endings) >20 0-5
FA-I (Meissner Corpuscle) 3-5 5-50
FA-II (Pacinian Corpuscle) >20 20-1000

fields, respectively. Once contact has been detected, humans
increase their grasp force to the target level, using both pre-
existing knowledge about the object and tactile information
gathered during the interaction. This loading process is regu-
lated largely by the response of the SA-I (Merkel) afferents,
which are slowly-adapting with small receptive fields. The load
phase ends when the target grasp force is reached with a stable
hand posture.

Once the object is securely grasped, humans use their arm
muscles to lift up the object, hold it in the air, and possibly
transport it to a new location. Corrective actions (typically
increases in grip force) are applied during the lifting and
holding phases when the tactile feedback does not match the
expected result. Srinivasan et al. [5] showed that the FA-I
and FA-II signals are the primary sources of information for
detecting both fingertip slip and new object contact. Slip is of
critical importance for rejecting disturbances in the lifting and
holding phases. When it comes time to place the item back
on the table, contact between between the object and the table
must be detected to successfully transition to unloading. The
SA-I afferents are again important during unload to properly
set the object down before full release.

These tactile sensing capabilities and corrective reactions
enable humans to adeptly hold a very wide range of objects
without crushing or dropping them. Indeed, humans typically
apply a grip force that is only 10–40% more than the minimum
amount needed to avoid slip [4], thereby achieving the dual
goals of safety and efficiency.

B. Our Approach: Human-Inspired Robotic Grasp Control
Inspired by the fluidity of human grasp control, this article

presents a set of methods that enable a robot to delicately
and firmly grasp real-world objects. We assume that fingertip
placement as well as hand and body movements have already

been determined using non-contact sensors and appropriate
planners. We describe robotic sensing methods that use finger-
mounted pressure arrays and a hand-mounted accelerometer
to mimic the important tactile signals provided by human
FA-I, FA-II, and SA-I mechanoreceptors. Noticeably absent
in our approach are the SA-II mechanoreceptors, which are
known to respond to tangential loading such as skin stretch.
We omit this channel because our current experimental system
cannot measure such signals, though our approach could
be expanded to include them if they were available. The
three sensory channels that we construct allow us to create
a high-level robotic grasp controller that emulates human
tactile manipulation: in the words of Johansson and Flanagan,
our controller is “centered on mechanical events that mark
transitions between consecutive action phases that represent
subgoals of the overall task” [4]. As diagrammed in Fig. 2,
our approach separates robotic grasping into six discrete states:
Close, Load, Lift and Hold, Replace, Unload, and Open.

These states purposefully mirror those of human grasping,
although we have combined Lift and Hold because their
control responses are nearly identical for the hand. Each state
defines a set of rules for controlling a robotic gripper to
perform the specified behavior based on the tactile sensa-
tions it experiences. In addition to creating this approach to
robotic grasp control, we implemented our methods on the
standardized hardware and software of the Willow Garage PR2
robot; our goal was to enable it to perform two-fingered grasps
on typical household objects at human-like speeds, without
crushing or dropping them.

Section II summarizes previous work in the area of tactile
robotic grasping and substantiates the novelty of our approach.
Section III describes pertinent attributes of the PR2 platform,
while Section IV defines our robotic SA-I, FA-I, and FA-II
tactile channels and the low-level position and force control
strategies we created for the PR2’s high-impedance gripper.
Section V expounds on the control diagram of Fig. 2 by
carefully defining each control rule and state transition. As
described in Section VI, we validated our methods through
experiments with the PR2 and a large collection of everyday
objects under a variety of challenging test conditions. We
conclude the article and discuss our plans for future work in
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Fig. 2. The state diagram for our robotic grasp controller. State transitions occur only after specific tactile events are detected. The details of this controller
are presented in Sections IV and V. Constant-valued parameters, such as VCLOSE, are defined in Table II.
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TABLE I
MECHANORECEPTORS IN GLABROUS HUMAN SKIN [4], [6]–[8].

Mechanoreceptor Receptive Field (mm2) Response (Hz)
SA-I (Merkel Disc) 2-4 0-5

SA-II (Ruffini Endings) >20 0-5
FA-I (Meissner Corpuscle) 3-5 5-50
FA-II (Pacinian Corpuscle) >20 20-1000

fields, respectively. Once contact has been detected, humans
increase their grasp force to the target level, using both pre-
existing knowledge about the object and tactile information
gathered during the interaction. This loading process is regu-
lated largely by the response of the SA-I (Merkel) afferents,
which are slowly-adapting with small receptive fields. The load
phase ends when the target grasp force is reached with a stable
hand posture.

Once the object is securely grasped, humans use their arm
muscles to lift up the object, hold it in the air, and possibly
transport it to a new location. Corrective actions (typically
increases in grip force) are applied during the lifting and
holding phases when the tactile feedback does not match the
expected result. Srinivasan et al. [5] showed that the FA-I
and FA-II signals are the primary sources of information for
detecting both fingertip slip and new object contact. Slip is of
critical importance for rejecting disturbances in the lifting and
holding phases. When it comes time to place the item back
on the table, contact between between the object and the table
must be detected to successfully transition to unloading. The
SA-I afferents are again important during unload to properly
set the object down before full release.

These tactile sensing capabilities and corrective reactions
enable humans to adeptly hold a very wide range of objects
without crushing or dropping them. Indeed, humans typically
apply a grip force that is only 10–40% more than the minimum
amount needed to avoid slip [4], thereby achieving the dual
goals of safety and efficiency.

B. Our Approach: Human-Inspired Robotic Grasp Control
Inspired by the fluidity of human grasp control, this article

presents a set of methods that enable a robot to delicately
and firmly grasp real-world objects. We assume that fingertip
placement as well as hand and body movements have already

been determined using non-contact sensors and appropriate
planners. We describe robotic sensing methods that use finger-
mounted pressure arrays and a hand-mounted accelerometer
to mimic the important tactile signals provided by human
FA-I, FA-II, and SA-I mechanoreceptors. Noticeably absent
in our approach are the SA-II mechanoreceptors, which are
known to respond to tangential loading such as skin stretch.
We omit this channel because our current experimental system
cannot measure such signals, though our approach could
be expanded to include them if they were available. The
three sensory channels that we construct allow us to create
a high-level robotic grasp controller that emulates human
tactile manipulation: in the words of Johansson and Flanagan,
our controller is “centered on mechanical events that mark
transitions between consecutive action phases that represent
subgoals of the overall task” [4]. As diagrammed in Fig. 2,
our approach separates robotic grasping into six discrete states:
Close, Load, Lift and Hold, Replace, Unload, and Open.

These states purposefully mirror those of human grasping,
although we have combined Lift and Hold because their
control responses are nearly identical for the hand. Each state
defines a set of rules for controlling a robotic gripper to
perform the specified behavior based on the tactile sensa-
tions it experiences. In addition to creating this approach to
robotic grasp control, we implemented our methods on the
standardized hardware and software of the Willow Garage PR2
robot; our goal was to enable it to perform two-fingered grasps
on typical household objects at human-like speeds, without
crushing or dropping them.

Section II summarizes previous work in the area of tactile
robotic grasping and substantiates the novelty of our approach.
Section III describes pertinent attributes of the PR2 platform,
while Section IV defines our robotic SA-I, FA-I, and FA-II
tactile channels and the low-level position and force control
strategies we created for the PR2’s high-impedance gripper.
Section V expounds on the control diagram of Fig. 2 by
carefully defining each control rule and state transition. As
described in Section VI, we validated our methods through
experiments with the PR2 and a large collection of everyday
objects under a variety of challenging test conditions. We
conclude the article and discuss our plans for future work in
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TABLE I
MECHANORECEPTORS IN GLABROUS HUMAN SKIN [4], [6]–[8].

Mechanoreceptor Receptive Field (mm2) Response (Hz)
SA-I (Merkel Disc) 2-4 0-5

SA-II (Ruffini Endings) >20 0-5
FA-I (Meissner Corpuscle) 3-5 5-50
FA-II (Pacinian Corpuscle) >20 20-1000

fields, respectively. Once contact has been detected, humans
increase their grasp force to the target level, using both pre-
existing knowledge about the object and tactile information
gathered during the interaction. This loading process is regu-
lated largely by the response of the SA-I (Merkel) afferents,
which are slowly-adapting with small receptive fields. The load
phase ends when the target grasp force is reached with a stable
hand posture.

Once the object is securely grasped, humans use their arm
muscles to lift up the object, hold it in the air, and possibly
transport it to a new location. Corrective actions (typically
increases in grip force) are applied during the lifting and
holding phases when the tactile feedback does not match the
expected result. Srinivasan et al. [5] showed that the FA-I
and FA-II signals are the primary sources of information for
detecting both fingertip slip and new object contact. Slip is of
critical importance for rejecting disturbances in the lifting and
holding phases. When it comes time to place the item back
on the table, contact between between the object and the table
must be detected to successfully transition to unloading. The
SA-I afferents are again important during unload to properly
set the object down before full release.

These tactile sensing capabilities and corrective reactions
enable humans to adeptly hold a very wide range of objects
without crushing or dropping them. Indeed, humans typically
apply a grip force that is only 10–40% more than the minimum
amount needed to avoid slip [4], thereby achieving the dual
goals of safety and efficiency.

B. Our Approach: Human-Inspired Robotic Grasp Control
Inspired by the fluidity of human grasp control, this article

presents a set of methods that enable a robot to delicately
and firmly grasp real-world objects. We assume that fingertip
placement as well as hand and body movements have already

been determined using non-contact sensors and appropriate
planners. We describe robotic sensing methods that use finger-
mounted pressure arrays and a hand-mounted accelerometer
to mimic the important tactile signals provided by human
FA-I, FA-II, and SA-I mechanoreceptors. Noticeably absent
in our approach are the SA-II mechanoreceptors, which are
known to respond to tangential loading such as skin stretch.
We omit this channel because our current experimental system
cannot measure such signals, though our approach could
be expanded to include them if they were available. The
three sensory channels that we construct allow us to create
a high-level robotic grasp controller that emulates human
tactile manipulation: in the words of Johansson and Flanagan,
our controller is “centered on mechanical events that mark
transitions between consecutive action phases that represent
subgoals of the overall task” [4]. As diagrammed in Fig. 2,
our approach separates robotic grasping into six discrete states:
Close, Load, Lift and Hold, Replace, Unload, and Open.

These states purposefully mirror those of human grasping,
although we have combined Lift and Hold because their
control responses are nearly identical for the hand. Each state
defines a set of rules for controlling a robotic gripper to
perform the specified behavior based on the tactile sensa-
tions it experiences. In addition to creating this approach to
robotic grasp control, we implemented our methods on the
standardized hardware and software of the Willow Garage PR2
robot; our goal was to enable it to perform two-fingered grasps
on typical household objects at human-like speeds, without
crushing or dropping them.

Section II summarizes previous work in the area of tactile
robotic grasping and substantiates the novelty of our approach.
Section III describes pertinent attributes of the PR2 platform,
while Section IV defines our robotic SA-I, FA-I, and FA-II
tactile channels and the low-level position and force control
strategies we created for the PR2’s high-impedance gripper.
Section V expounds on the control diagram of Fig. 2 by
carefully defining each control rule and state transition. As
described in Section VI, we validated our methods through
experiments with the PR2 and a large collection of everyday
objects under a variety of challenging test conditions. We
conclude the article and discuss our plans for future work in
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are presented in Sections IV and V. Constant-valued parameters, such as VCLOSE, are defined in Table II.

Action-Phase Grasp Controller



IEEE TRANSACTION ON ROBOTICS, VOL. X, NO. X, MONTH YEAR 2

TABLE I
MECHANORECEPTORS IN GLABROUS HUMAN SKIN [4], [6]–[8].

Mechanoreceptor Receptive Field (mm2) Response (Hz)
SA-I (Merkel Disc) 2-4 0-5

SA-II (Ruffini Endings) >20 0-5
FA-I (Meissner Corpuscle) 3-5 5-50
FA-II (Pacinian Corpuscle) >20 20-1000

fields, respectively. Once contact has been detected, humans
increase their grasp force to the target level, using both pre-
existing knowledge about the object and tactile information
gathered during the interaction. This loading process is regu-
lated largely by the response of the SA-I (Merkel) afferents,
which are slowly-adapting with small receptive fields. The load
phase ends when the target grasp force is reached with a stable
hand posture.

Once the object is securely grasped, humans use their arm
muscles to lift up the object, hold it in the air, and possibly
transport it to a new location. Corrective actions (typically
increases in grip force) are applied during the lifting and
holding phases when the tactile feedback does not match the
expected result. Srinivasan et al. [5] showed that the FA-I
and FA-II signals are the primary sources of information for
detecting both fingertip slip and new object contact. Slip is of
critical importance for rejecting disturbances in the lifting and
holding phases. When it comes time to place the item back
on the table, contact between between the object and the table
must be detected to successfully transition to unloading. The
SA-I afferents are again important during unload to properly
set the object down before full release.

These tactile sensing capabilities and corrective reactions
enable humans to adeptly hold a very wide range of objects
without crushing or dropping them. Indeed, humans typically
apply a grip force that is only 10–40% more than the minimum
amount needed to avoid slip [4], thereby achieving the dual
goals of safety and efficiency.

B. Our Approach: Human-Inspired Robotic Grasp Control
Inspired by the fluidity of human grasp control, this article

presents a set of methods that enable a robot to delicately
and firmly grasp real-world objects. We assume that fingertip
placement as well as hand and body movements have already

been determined using non-contact sensors and appropriate
planners. We describe robotic sensing methods that use finger-
mounted pressure arrays and a hand-mounted accelerometer
to mimic the important tactile signals provided by human
FA-I, FA-II, and SA-I mechanoreceptors. Noticeably absent
in our approach are the SA-II mechanoreceptors, which are
known to respond to tangential loading such as skin stretch.
We omit this channel because our current experimental system
cannot measure such signals, though our approach could
be expanded to include them if they were available. The
three sensory channels that we construct allow us to create
a high-level robotic grasp controller that emulates human
tactile manipulation: in the words of Johansson and Flanagan,
our controller is “centered on mechanical events that mark
transitions between consecutive action phases that represent
subgoals of the overall task” [4]. As diagrammed in Fig. 2,
our approach separates robotic grasping into six discrete states:
Close, Load, Lift and Hold, Replace, Unload, and Open.

These states purposefully mirror those of human grasping,
although we have combined Lift and Hold because their
control responses are nearly identical for the hand. Each state
defines a set of rules for controlling a robotic gripper to
perform the specified behavior based on the tactile sensa-
tions it experiences. In addition to creating this approach to
robotic grasp control, we implemented our methods on the
standardized hardware and software of the Willow Garage PR2
robot; our goal was to enable it to perform two-fingered grasps
on typical household objects at human-like speeds, without
crushing or dropping them.

Section II summarizes previous work in the area of tactile
robotic grasping and substantiates the novelty of our approach.
Section III describes pertinent attributes of the PR2 platform,
while Section IV defines our robotic SA-I, FA-I, and FA-II
tactile channels and the low-level position and force control
strategies we created for the PR2’s high-impedance gripper.
Section V expounds on the control diagram of Fig. 2 by
carefully defining each control rule and state transition. As
described in Section VI, we validated our methods through
experiments with the PR2 and a large collection of everyday
objects under a variety of challenging test conditions. We
conclude the article and discuss our plans for future work in
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Fig. 2. The state diagram for our robotic grasp controller. State transitions occur only after specific tactile events are detected. The details of this controller
are presented in Sections IV and V. Constant-valued parameters, such as VCLOSE, are defined in Table II.
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TABLE I
MECHANORECEPTORS IN GLABROUS HUMAN SKIN [4], [6]–[8].

Mechanoreceptor Receptive Field (mm2) Response (Hz)
SA-I (Merkel Disc) 2-4 0-5

SA-II (Ruffini Endings) >20 0-5
FA-I (Meissner Corpuscle) 3-5 5-50
FA-II (Pacinian Corpuscle) >20 20-1000

fields, respectively. Once contact has been detected, humans
increase their grasp force to the target level, using both pre-
existing knowledge about the object and tactile information
gathered during the interaction. This loading process is regu-
lated largely by the response of the SA-I (Merkel) afferents,
which are slowly-adapting with small receptive fields. The load
phase ends when the target grasp force is reached with a stable
hand posture.

Once the object is securely grasped, humans use their arm
muscles to lift up the object, hold it in the air, and possibly
transport it to a new location. Corrective actions (typically
increases in grip force) are applied during the lifting and
holding phases when the tactile feedback does not match the
expected result. Srinivasan et al. [5] showed that the FA-I
and FA-II signals are the primary sources of information for
detecting both fingertip slip and new object contact. Slip is of
critical importance for rejecting disturbances in the lifting and
holding phases. When it comes time to place the item back
on the table, contact between between the object and the table
must be detected to successfully transition to unloading. The
SA-I afferents are again important during unload to properly
set the object down before full release.

These tactile sensing capabilities and corrective reactions
enable humans to adeptly hold a very wide range of objects
without crushing or dropping them. Indeed, humans typically
apply a grip force that is only 10–40% more than the minimum
amount needed to avoid slip [4], thereby achieving the dual
goals of safety and efficiency.

B. Our Approach: Human-Inspired Robotic Grasp Control
Inspired by the fluidity of human grasp control, this article

presents a set of methods that enable a robot to delicately
and firmly grasp real-world objects. We assume that fingertip
placement as well as hand and body movements have already

been determined using non-contact sensors and appropriate
planners. We describe robotic sensing methods that use finger-
mounted pressure arrays and a hand-mounted accelerometer
to mimic the important tactile signals provided by human
FA-I, FA-II, and SA-I mechanoreceptors. Noticeably absent
in our approach are the SA-II mechanoreceptors, which are
known to respond to tangential loading such as skin stretch.
We omit this channel because our current experimental system
cannot measure such signals, though our approach could
be expanded to include them if they were available. The
three sensory channels that we construct allow us to create
a high-level robotic grasp controller that emulates human
tactile manipulation: in the words of Johansson and Flanagan,
our controller is “centered on mechanical events that mark
transitions between consecutive action phases that represent
subgoals of the overall task” [4]. As diagrammed in Fig. 2,
our approach separates robotic grasping into six discrete states:
Close, Load, Lift and Hold, Replace, Unload, and Open.

These states purposefully mirror those of human grasping,
although we have combined Lift and Hold because their
control responses are nearly identical for the hand. Each state
defines a set of rules for controlling a robotic gripper to
perform the specified behavior based on the tactile sensa-
tions it experiences. In addition to creating this approach to
robotic grasp control, we implemented our methods on the
standardized hardware and software of the Willow Garage PR2
robot; our goal was to enable it to perform two-fingered grasps
on typical household objects at human-like speeds, without
crushing or dropping them.

Section II summarizes previous work in the area of tactile
robotic grasping and substantiates the novelty of our approach.
Section III describes pertinent attributes of the PR2 platform,
while Section IV defines our robotic SA-I, FA-I, and FA-II
tactile channels and the low-level position and force control
strategies we created for the PR2’s high-impedance gripper.
Section V expounds on the control diagram of Fig. 2 by
carefully defining each control rule and state transition. As
described in Section VI, we validated our methods through
experiments with the PR2 and a large collection of everyday
objects under a variety of challenging test conditions. We
conclude the article and discuss our plans for future work in
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Fig. 2. The state diagram for our robotic grasp controller. State transitions occur only after specific tactile events are detected. The details of this controller
are presented in Sections IV and V. Constant-valued parameters, such as VCLOSE, are defined in Table II.
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TABLE I
MECHANORECEPTORS IN GLABROUS HUMAN SKIN [4], [6]–[8].

Mechanoreceptor Receptive Field (mm2) Response (Hz)
SA-I (Merkel Disc) 2-4 0-5

SA-II (Ruffini Endings) >20 0-5
FA-I (Meissner Corpuscle) 3-5 5-50
FA-II (Pacinian Corpuscle) >20 20-1000

fields, respectively. Once contact has been detected, humans
increase their grasp force to the target level, using both pre-
existing knowledge about the object and tactile information
gathered during the interaction. This loading process is regu-
lated largely by the response of the SA-I (Merkel) afferents,
which are slowly-adapting with small receptive fields. The load
phase ends when the target grasp force is reached with a stable
hand posture.

Once the object is securely grasped, humans use their arm
muscles to lift up the object, hold it in the air, and possibly
transport it to a new location. Corrective actions (typically
increases in grip force) are applied during the lifting and
holding phases when the tactile feedback does not match the
expected result. Srinivasan et al. [5] showed that the FA-I
and FA-II signals are the primary sources of information for
detecting both fingertip slip and new object contact. Slip is of
critical importance for rejecting disturbances in the lifting and
holding phases. When it comes time to place the item back
on the table, contact between between the object and the table
must be detected to successfully transition to unloading. The
SA-I afferents are again important during unload to properly
set the object down before full release.

These tactile sensing capabilities and corrective reactions
enable humans to adeptly hold a very wide range of objects
without crushing or dropping them. Indeed, humans typically
apply a grip force that is only 10–40% more than the minimum
amount needed to avoid slip [4], thereby achieving the dual
goals of safety and efficiency.

B. Our Approach: Human-Inspired Robotic Grasp Control
Inspired by the fluidity of human grasp control, this article

presents a set of methods that enable a robot to delicately
and firmly grasp real-world objects. We assume that fingertip
placement as well as hand and body movements have already

been determined using non-contact sensors and appropriate
planners. We describe robotic sensing methods that use finger-
mounted pressure arrays and a hand-mounted accelerometer
to mimic the important tactile signals provided by human
FA-I, FA-II, and SA-I mechanoreceptors. Noticeably absent
in our approach are the SA-II mechanoreceptors, which are
known to respond to tangential loading such as skin stretch.
We omit this channel because our current experimental system
cannot measure such signals, though our approach could
be expanded to include them if they were available. The
three sensory channels that we construct allow us to create
a high-level robotic grasp controller that emulates human
tactile manipulation: in the words of Johansson and Flanagan,
our controller is “centered on mechanical events that mark
transitions between consecutive action phases that represent
subgoals of the overall task” [4]. As diagrammed in Fig. 2,
our approach separates robotic grasping into six discrete states:
Close, Load, Lift and Hold, Replace, Unload, and Open.

These states purposefully mirror those of human grasping,
although we have combined Lift and Hold because their
control responses are nearly identical for the hand. Each state
defines a set of rules for controlling a robotic gripper to
perform the specified behavior based on the tactile sensa-
tions it experiences. In addition to creating this approach to
robotic grasp control, we implemented our methods on the
standardized hardware and software of the Willow Garage PR2
robot; our goal was to enable it to perform two-fingered grasps
on typical household objects at human-like speeds, without
crushing or dropping them.

Section II summarizes previous work in the area of tactile
robotic grasping and substantiates the novelty of our approach.
Section III describes pertinent attributes of the PR2 platform,
while Section IV defines our robotic SA-I, FA-I, and FA-II
tactile channels and the low-level position and force control
strategies we created for the PR2’s high-impedance gripper.
Section V expounds on the control diagram of Fig. 2 by
carefully defining each control rule and state transition. As
described in Section VI, we validated our methods through
experiments with the PR2 and a large collection of everyday
objects under a variety of challenging test conditions. We
conclude the article and discuss our plans for future work in
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Fig. 2. The state diagram for our robotic grasp controller. State transitions occur only after specific tactile events are detected. The details of this controller
are presented in Sections IV and V. Constant-valued parameters, such as VCLOSE, are defined in Table II.
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TABLE I
MECHANORECEPTORS IN GLABROUS HUMAN SKIN [4], [6]–[8].

Mechanoreceptor Receptive Field (mm2) Response (Hz)
SA-I (Merkel Disc) 2-4 0-5

SA-II (Ruffini Endings) >20 0-5
FA-I (Meissner Corpuscle) 3-5 5-50
FA-II (Pacinian Corpuscle) >20 20-1000

fields, respectively. Once contact has been detected, humans
increase their grasp force to the target level, using both pre-
existing knowledge about the object and tactile information
gathered during the interaction. This loading process is regu-
lated largely by the response of the SA-I (Merkel) afferents,
which are slowly-adapting with small receptive fields. The load
phase ends when the target grasp force is reached with a stable
hand posture.

Once the object is securely grasped, humans use their arm
muscles to lift up the object, hold it in the air, and possibly
transport it to a new location. Corrective actions (typically
increases in grip force) are applied during the lifting and
holding phases when the tactile feedback does not match the
expected result. Srinivasan et al. [5] showed that the FA-I
and FA-II signals are the primary sources of information for
detecting both fingertip slip and new object contact. Slip is of
critical importance for rejecting disturbances in the lifting and
holding phases. When it comes time to place the item back
on the table, contact between between the object and the table
must be detected to successfully transition to unloading. The
SA-I afferents are again important during unload to properly
set the object down before full release.

These tactile sensing capabilities and corrective reactions
enable humans to adeptly hold a very wide range of objects
without crushing or dropping them. Indeed, humans typically
apply a grip force that is only 10–40% more than the minimum
amount needed to avoid slip [4], thereby achieving the dual
goals of safety and efficiency.

B. Our Approach: Human-Inspired Robotic Grasp Control
Inspired by the fluidity of human grasp control, this article

presents a set of methods that enable a robot to delicately
and firmly grasp real-world objects. We assume that fingertip
placement as well as hand and body movements have already

been determined using non-contact sensors and appropriate
planners. We describe robotic sensing methods that use finger-
mounted pressure arrays and a hand-mounted accelerometer
to mimic the important tactile signals provided by human
FA-I, FA-II, and SA-I mechanoreceptors. Noticeably absent
in our approach are the SA-II mechanoreceptors, which are
known to respond to tangential loading such as skin stretch.
We omit this channel because our current experimental system
cannot measure such signals, though our approach could
be expanded to include them if they were available. The
three sensory channels that we construct allow us to create
a high-level robotic grasp controller that emulates human
tactile manipulation: in the words of Johansson and Flanagan,
our controller is “centered on mechanical events that mark
transitions between consecutive action phases that represent
subgoals of the overall task” [4]. As diagrammed in Fig. 2,
our approach separates robotic grasping into six discrete states:
Close, Load, Lift and Hold, Replace, Unload, and Open.

These states purposefully mirror those of human grasping,
although we have combined Lift and Hold because their
control responses are nearly identical for the hand. Each state
defines a set of rules for controlling a robotic gripper to
perform the specified behavior based on the tactile sensa-
tions it experiences. In addition to creating this approach to
robotic grasp control, we implemented our methods on the
standardized hardware and software of the Willow Garage PR2
robot; our goal was to enable it to perform two-fingered grasps
on typical household objects at human-like speeds, without
crushing or dropping them.

Section II summarizes previous work in the area of tactile
robotic grasping and substantiates the novelty of our approach.
Section III describes pertinent attributes of the PR2 platform,
while Section IV defines our robotic SA-I, FA-I, and FA-II
tactile channels and the low-level position and force control
strategies we created for the PR2’s high-impedance gripper.
Section V expounds on the control diagram of Fig. 2 by
carefully defining each control rule and state transition. As
described in Section VI, we validated our methods through
experiments with the PR2 and a large collection of everyday
objects under a variety of challenging test conditions. We
conclude the article and discuss our plans for future work in
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TABLE I
MECHANORECEPTORS IN GLABROUS HUMAN SKIN [4], [6]–[8].

Mechanoreceptor Receptive Field (mm2) Response (Hz)
SA-I (Merkel Disc) 2-4 0-5

SA-II (Ruffini Endings) >20 0-5
FA-I (Meissner Corpuscle) 3-5 5-50
FA-II (Pacinian Corpuscle) >20 20-1000

fields, respectively. Once contact has been detected, humans
increase their grasp force to the target level, using both pre-
existing knowledge about the object and tactile information
gathered during the interaction. This loading process is regu-
lated largely by the response of the SA-I (Merkel) afferents,
which are slowly-adapting with small receptive fields. The load
phase ends when the target grasp force is reached with a stable
hand posture.

Once the object is securely grasped, humans use their arm
muscles to lift up the object, hold it in the air, and possibly
transport it to a new location. Corrective actions (typically
increases in grip force) are applied during the lifting and
holding phases when the tactile feedback does not match the
expected result. Srinivasan et al. [5] showed that the FA-I
and FA-II signals are the primary sources of information for
detecting both fingertip slip and new object contact. Slip is of
critical importance for rejecting disturbances in the lifting and
holding phases. When it comes time to place the item back
on the table, contact between between the object and the table
must be detected to successfully transition to unloading. The
SA-I afferents are again important during unload to properly
set the object down before full release.

These tactile sensing capabilities and corrective reactions
enable humans to adeptly hold a very wide range of objects
without crushing or dropping them. Indeed, humans typically
apply a grip force that is only 10–40% more than the minimum
amount needed to avoid slip [4], thereby achieving the dual
goals of safety and efficiency.

B. Our Approach: Human-Inspired Robotic Grasp Control
Inspired by the fluidity of human grasp control, this article

presents a set of methods that enable a robot to delicately
and firmly grasp real-world objects. We assume that fingertip
placement as well as hand and body movements have already

been determined using non-contact sensors and appropriate
planners. We describe robotic sensing methods that use finger-
mounted pressure arrays and a hand-mounted accelerometer
to mimic the important tactile signals provided by human
FA-I, FA-II, and SA-I mechanoreceptors. Noticeably absent
in our approach are the SA-II mechanoreceptors, which are
known to respond to tangential loading such as skin stretch.
We omit this channel because our current experimental system
cannot measure such signals, though our approach could
be expanded to include them if they were available. The
three sensory channels that we construct allow us to create
a high-level robotic grasp controller that emulates human
tactile manipulation: in the words of Johansson and Flanagan,
our controller is “centered on mechanical events that mark
transitions between consecutive action phases that represent
subgoals of the overall task” [4]. As diagrammed in Fig. 2,
our approach separates robotic grasping into six discrete states:
Close, Load, Lift and Hold, Replace, Unload, and Open.

These states purposefully mirror those of human grasping,
although we have combined Lift and Hold because their
control responses are nearly identical for the hand. Each state
defines a set of rules for controlling a robotic gripper to
perform the specified behavior based on the tactile sensa-
tions it experiences. In addition to creating this approach to
robotic grasp control, we implemented our methods on the
standardized hardware and software of the Willow Garage PR2
robot; our goal was to enable it to perform two-fingered grasps
on typical household objects at human-like speeds, without
crushing or dropping them.

Section II summarizes previous work in the area of tactile
robotic grasping and substantiates the novelty of our approach.
Section III describes pertinent attributes of the PR2 platform,
while Section IV defines our robotic SA-I, FA-I, and FA-II
tactile channels and the low-level position and force control
strategies we created for the PR2’s high-impedance gripper.
Section V expounds on the control diagram of Fig. 2 by
carefully defining each control rule and state transition. As
described in Section VI, we validated our methods through
experiments with the PR2 and a large collection of everyday
objects under a variety of challenging test conditions. We
conclude the article and discuss our plans for future work in
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subgoals of the overall task” [4]. As diagrammed in Fig. 2,
our approach separates robotic grasping into six discrete states:
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perform the specified behavior based on the tactile sensa-
tions it experiences. In addition to creating this approach to
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Fig. 4. Time history data for an interaction between the gripper and an Odwalla juice bottle. Controller states are marked with bars at the top, and important
signals (state transitions and tactile events) are indicated with arrows at the bottom.

as follows:

�ah(z) =
�
(Ha(z)ah,x)2 + (Ha(z)ah,y)2 + (Ha(z)ah,z)2

(3)
The hand vibration signal �ah is calculated by taking the
magnitude of the high-pass-filtered three-dimensional accel-
eration vector. The filter applied to each of the three Cartesian
acceleration components (ah,x ah,y ah,z) is a discrete-time
first-order Butterworth high-pass filter Ha(z) with a 50 Hz
cutoff frequency, designed for the 3 kHz sampling rate of our
acceleration data stream.

D. Position and Force Control
In addition to the rich tactile sensations described above,

humans excel at manipulation because they can move compe-
tently through free space but quickly transition to regulating
grasp force during object contact [4]. Replicating the fluidity
of human grasping with a high-impedance parallel jaw gripper
requires well designed position and force controllers. Both of
these controllers appear several times in the high-level state
diagram of Fig. 2; each controller block is labeled with its type,
along with the desired motion or force output. To facilitate
a generic presentation of our approach, the mathematical
constants used in this article are designated with an all-
capitalized naming convention.

The PR2 gripper is a geared mechanism, so it lends itself
well to position control. We define its position xg in meters
and its velocity vg in meters per second. The position is zero
when the fingers touch and positive otherwise, so that the
position value corresponds to the grip aperture. The gripper
velocity follows the same sign as position, with positive values
indicating that the hand is opening. We found that we could
achieve good position tracking via a simple proportional-
derivative controller with an additional velocity-dependent

term to overcome friction:

E = KP · (xg − xg,des) + KD · (vg − vg,des)

−sign(vg,des) · EFRICTION (4)

Here, E is the motor effort (N), KP is the proportional error
gain (N/m), KD is the derivative error gain (Ns/m), and xg,des

and vg,des are the desired gripper position (m) and velocity
(m/s) respectively. EFRICTION is a scalar constant for feed-
forward friction compensation, applied to encourage motion
in the direction of vg,des. Note that motor effort is defined to
be positive in the direction that closes the gripper, which is
opposite the sign convention for the motion variables. Table II
lists values and units for all of the constants used in our
controllers, including KP, KD, and EFRICTION.

We created a force controller on top of this position con-
troller to enable the PR2 to better interact with delicate objects.
This controller requires access to the fingertip force signals
Fg described above in Section IV-A. Forces that compress the
fingertips are defined to be positive, so that positive motor
effort has the tendency of creating positive fingertip forces.
We have developed a force controller that drives the desired
position and velocity terms based on the error between the
desired force and the actual force [26]:

Fg,min = min (Fgl, Fgr) (5)

vg,des = KF · (Fg,min − Fg,des) (6)

KF =

�
KFCLOSE if Fg,min − Fg,des < 0,
KFOPEN otherwise

(7)

We servo on the minimum of the two finger forces, Fg,min, as
defined in (5), to ensure dual finger contact. Errors in tracking
the desired force Fg,des are multiplied by the constant gain KF
to yield the desired velocity for the position controller (6). This
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E. Unload

The Unload phase is entered automatically after the held
object contacts the target surface. The goal of this phase is
simply to let go, but our controller performs this unloading
gradually to avoid abrupt transitions. The desired grip force is
linearly reduced to zero over a set period of time using:

Fg,des = Fc − Fc
t− ts

TUNLOAD
(14)

Here, t represents the present time, and ts represents the start-
ing time for the Unload state. TUNLOAD is a constant that
determines the unloading duration. The state is exited when
Fg,des reaches zero, which occurs when t−ts == TUNLOAD.

F. Open

Once the robot has released the object on the surface, it
proceeds to open the gripper. This movement is accomplished
by the position controller, using a constant positive desired
velocity of VOPEN.

VI. EXPERIMENTAL VALIDATION

This section first presents a method for tuning our two
main controller constants, KSLIP and KHARDNESS, which
helps show how these parameters affect grasp success. We
then discuss experiments that test the performance of the novel
aspects of our controller: the grip force chosen during Load,
the response to Slip during Lift and Hold, and the effect of Slip
and Vibration signals during Replace. To understand how our
approach compares to more simplistic grasping solutions, we
then conducted a more general test of the PR2’s capabilities
using a collection of fifty everyday household objects.

A. Parameter Tuning

One challenge in implementing the grasp controller of
Section V is to select appropriate values for KSLIP and
KHARDNESS. These two parameters play a major role in the
successful manipulation of objects. Proper tuning will result
in delicate manipulation, while improper tuning will result in
high rates of object crushing or slippage. We define crushing to
be a deformation of 10 mm beyond the initial surface contact.
We define slippage in two forms: translation (greater than 5
mm), or rotation (greater than 0.175 radians).

For the PR2 robot, our parameter tuning experiments pro-
ceeded as follows. We chose a plastic cylindrical-shaped
Coffee-Mate canister with a mass of 0.45 kg for our parameter
tuning study. This object was selected for its heavy weight,
which necessitates using a strong grasp to prevent object slip,
and its flexible body, which necessitates using a delicate grasp
to avoid crushing the object. First, the canister was placed
on a table in front of the robot, and the open robot gripper
was positioned around the object. Next, the Grasp() command
was sent to the robot to initiate the event-driven grasping
sequence. Finally, after the StableContact signal was achieved,
the robot lifted the object 0.3 meters upward and rotated it 1.05
radians. During the task the grasp aperture was continuously
monitored to detect crushing conditions. After the task, the
experimenter measured the translation and rotation of the

0.63

1.08

1.41

1.73

Fig. 5. The effect of varying KSLIP and KHARDNESS. As KHARDNESS
is decreased away from the tuned value, objects tend to slip within the grasp
due to inadequate initial grip forces. As KHARDNESS is increased, the grip
force is overestimated, and crushing occurs. As KSLIP is decreased, the robot
does not respond strongly enough to slip events, and the object is allowed
to slip an unacceptable amount. As KSLIP is increased, the robot tends to
overcompensate and crush objects.

object to determine whether slip had occurred. This experiment
was repeated ten times for all combinations of five values of
KSLIP and five values of KHARDNESS, for a total of 250
trials. The five different values for KSLIP and KHARDNESS
were selected such that they caused the controller response to
vary between the two extremes of crushing and slipping. The
resulting state of each grasping attempt was recorded as either
crushed, slipped (which included object drops), or successful.
These results are presented in Fig. 5. Setting KSLIP and
KHARDNESS to the central values, as listed in Table II, yields
a system that is very likely to succeed at grasping. Small
deviations away from the ideal parameter values can often
yield somewhat successful grasp behavior, but they typically
increase the likelihood for slip and/or crush results. Large
deviations from the ideal parameter values result in completely
unsuccessful grasp results, as defined by our strict crushing
and slipping metrics. Very large value for KHARDNESS
will cause the robot to saturate its grip force, resulting in
the tightest possible grasp. In practice, this parameter space
can be sparsely sampled during tuning, but it should be
explored completely to obtain a thorough understanding of
the parameter interaction as seen here.

B. Grip Force Estimation During Loading

As described in Section V-B, the controller in the Load
phase selects the target grip force based on the maximum force
measured during the gripper’s initial contact with the object,
normalized by contact speed. We evaluated this technique
through grasp testing on eight different objects: a paper cup, a
paperboard tea box, a ripe banana, an empty soda can, a raw
chicken egg, a tennis ball, a glass bottle, and a full soda can.

We began the experiment by obtaining ground-truth mea-
surements of the minimum grip force necessary for the PR2 to
lift each object. These tests were done by placing each object
in a known location and orientation on a table. The robot then
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Coffee-Mate canister with a mass of 0.45 kg for our parameter
tuning study. This object was selected for its heavy weight,
which necessitates using a strong grasp to prevent object slip,
and its flexible body, which necessitates using a delicate grasp
to avoid crushing the object. First, the canister was placed
on a table in front of the robot, and the open robot gripper
was positioned around the object. Next, the Grasp() command
was sent to the robot to initiate the event-driven grasping
sequence. Finally, after the StableContact signal was achieved,
the robot lifted the object 0.3 meters upward and rotated it 1.05
radians. During the task the grasp aperture was continuously
monitored to detect crushing conditions. After the task, the
experimenter measured the translation and rotation of the
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Fig. 5. The effect of varying KSLIP and KHARDNESS. As KHARDNESS
is decreased away from the tuned value, objects tend to slip within the grasp
due to inadequate initial grip forces. As KHARDNESS is increased, the grip
force is overestimated, and crushing occurs. As KSLIP is decreased, the robot
does not respond strongly enough to slip events, and the object is allowed
to slip an unacceptable amount. As KSLIP is increased, the robot tends to
overcompensate and crush objects.

object to determine whether slip had occurred. This experiment
was repeated ten times for all combinations of five values of
KSLIP and five values of KHARDNESS, for a total of 250
trials. The five different values for KSLIP and KHARDNESS
were selected such that they caused the controller response to
vary between the two extremes of crushing and slipping. The
resulting state of each grasping attempt was recorded as either
crushed, slipped (which included object drops), or successful.
These results are presented in Fig. 5. Setting KSLIP and
KHARDNESS to the central values, as listed in Table II, yields
a system that is very likely to succeed at grasping. Small
deviations away from the ideal parameter values can often
yield somewhat successful grasp behavior, but they typically
increase the likelihood for slip and/or crush results. Large
deviations from the ideal parameter values result in completely
unsuccessful grasp results, as defined by our strict crushing
and slipping metrics. Very large value for KHARDNESS
will cause the robot to saturate its grip force, resulting in
the tightest possible grasp. In practice, this parameter space
can be sparsely sampled during tuning, but it should be
explored completely to obtain a thorough understanding of
the parameter interaction as seen here.

B. Grip Force Estimation During Loading

As described in Section V-B, the controller in the Load
phase selects the target grip force based on the maximum force
measured during the gripper’s initial contact with the object,
normalized by contact speed. We evaluated this technique
through grasp testing on eight different objects: a paper cup, a
paperboard tea box, a ripe banana, an empty soda can, a raw
chicken egg, a tennis ball, a glass bottle, and a full soda can.

We began the experiment by obtaining ground-truth mea-
surements of the minimum grip force necessary for the PR2 to
lift each object. These tests were done by placing each object
in a known location and orientation on a table. The robot then
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E. Unload

The Unload phase is entered automatically after the held
object contacts the target surface. The goal of this phase is
simply to let go, but our controller performs this unloading
gradually to avoid abrupt transitions. The desired grip force is
linearly reduced to zero over a set period of time using:

Fg,des = Fc − Fc
t− ts

TUNLOAD
(14)

Here, t represents the present time, and ts represents the start-
ing time for the Unload state. TUNLOAD is a constant that
determines the unloading duration. The state is exited when
Fg,des reaches zero, which occurs when t−ts == TUNLOAD.

F. Open

Once the robot has released the object on the surface, it
proceeds to open the gripper. This movement is accomplished
by the position controller, using a constant positive desired
velocity of VOPEN.

VI. EXPERIMENTAL VALIDATION

This section first presents a method for tuning our two
main controller constants, KSLIP and KHARDNESS, which
helps show how these parameters affect grasp success. We
then discuss experiments that test the performance of the novel
aspects of our controller: the grip force chosen during Load,
the response to Slip during Lift and Hold, and the effect of Slip
and Vibration signals during Replace. To understand how our
approach compares to more simplistic grasping solutions, we
then conducted a more general test of the PR2’s capabilities
using a collection of fifty everyday household objects.

A. Parameter Tuning

One challenge in implementing the grasp controller of
Section V is to select appropriate values for KSLIP and
KHARDNESS. These two parameters play a major role in the
successful manipulation of objects. Proper tuning will result
in delicate manipulation, while improper tuning will result in
high rates of object crushing or slippage. We define crushing to
be a deformation of 10 mm beyond the initial surface contact.
We define slippage in two forms: translation (greater than 5
mm), or rotation (greater than 0.175 radians).

For the PR2 robot, our parameter tuning experiments pro-
ceeded as follows. We chose a plastic cylindrical-shaped
Coffee-Mate canister with a mass of 0.45 kg for our parameter
tuning study. This object was selected for its heavy weight,
which necessitates using a strong grasp to prevent object slip,
and its flexible body, which necessitates using a delicate grasp
to avoid crushing the object. First, the canister was placed
on a table in front of the robot, and the open robot gripper
was positioned around the object. Next, the Grasp() command
was sent to the robot to initiate the event-driven grasping
sequence. Finally, after the StableContact signal was achieved,
the robot lifted the object 0.3 meters upward and rotated it 1.05
radians. During the task the grasp aperture was continuously
monitored to detect crushing conditions. After the task, the
experimenter measured the translation and rotation of the
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is decreased away from the tuned value, objects tend to slip within the grasp
due to inadequate initial grip forces. As KHARDNESS is increased, the grip
force is overestimated, and crushing occurs. As KSLIP is decreased, the robot
does not respond strongly enough to slip events, and the object is allowed
to slip an unacceptable amount. As KSLIP is increased, the robot tends to
overcompensate and crush objects.

object to determine whether slip had occurred. This experiment
was repeated ten times for all combinations of five values of
KSLIP and five values of KHARDNESS, for a total of 250
trials. The five different values for KSLIP and KHARDNESS
were selected such that they caused the controller response to
vary between the two extremes of crushing and slipping. The
resulting state of each grasping attempt was recorded as either
crushed, slipped (which included object drops), or successful.
These results are presented in Fig. 5. Setting KSLIP and
KHARDNESS to the central values, as listed in Table II, yields
a system that is very likely to succeed at grasping. Small
deviations away from the ideal parameter values can often
yield somewhat successful grasp behavior, but they typically
increase the likelihood for slip and/or crush results. Large
deviations from the ideal parameter values result in completely
unsuccessful grasp results, as defined by our strict crushing
and slipping metrics. Very large value for KHARDNESS
will cause the robot to saturate its grip force, resulting in
the tightest possible grasp. In practice, this parameter space
can be sparsely sampled during tuning, but it should be
explored completely to obtain a thorough understanding of
the parameter interaction as seen here.

B. Grip Force Estimation During Loading

As described in Section V-B, the controller in the Load
phase selects the target grip force based on the maximum force
measured during the gripper’s initial contact with the object,
normalized by contact speed. We evaluated this technique
through grasp testing on eight different objects: a paper cup, a
paperboard tea box, a ripe banana, an empty soda can, a raw
chicken egg, a tennis ball, a glass bottle, and a full soda can.

We began the experiment by obtaining ground-truth mea-
surements of the minimum grip force necessary for the PR2 to
lift each object. These tests were done by placing each object
in a known location and orientation on a table. The robot then
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E. Unload

The Unload phase is entered automatically after the held
object contacts the target surface. The goal of this phase is
simply to let go, but our controller performs this unloading
gradually to avoid abrupt transitions. The desired grip force is
linearly reduced to zero over a set period of time using:

Fg,des = Fc − Fc
t− ts

TUNLOAD
(14)

Here, t represents the present time, and ts represents the start-
ing time for the Unload state. TUNLOAD is a constant that
determines the unloading duration. The state is exited when
Fg,des reaches zero, which occurs when t−ts == TUNLOAD.

F. Open

Once the robot has released the object on the surface, it
proceeds to open the gripper. This movement is accomplished
by the position controller, using a constant positive desired
velocity of VOPEN.

VI. EXPERIMENTAL VALIDATION

This section first presents a method for tuning our two
main controller constants, KSLIP and KHARDNESS, which
helps show how these parameters affect grasp success. We
then discuss experiments that test the performance of the novel
aspects of our controller: the grip force chosen during Load,
the response to Slip during Lift and Hold, and the effect of Slip
and Vibration signals during Replace. To understand how our
approach compares to more simplistic grasping solutions, we
then conducted a more general test of the PR2’s capabilities
using a collection of fifty everyday household objects.

A. Parameter Tuning

One challenge in implementing the grasp controller of
Section V is to select appropriate values for KSLIP and
KHARDNESS. These two parameters play a major role in the
successful manipulation of objects. Proper tuning will result
in delicate manipulation, while improper tuning will result in
high rates of object crushing or slippage. We define crushing to
be a deformation of 10 mm beyond the initial surface contact.
We define slippage in two forms: translation (greater than 5
mm), or rotation (greater than 0.175 radians).

For the PR2 robot, our parameter tuning experiments pro-
ceeded as follows. We chose a plastic cylindrical-shaped
Coffee-Mate canister with a mass of 0.45 kg for our parameter
tuning study. This object was selected for its heavy weight,
which necessitates using a strong grasp to prevent object slip,
and its flexible body, which necessitates using a delicate grasp
to avoid crushing the object. First, the canister was placed
on a table in front of the robot, and the open robot gripper
was positioned around the object. Next, the Grasp() command
was sent to the robot to initiate the event-driven grasping
sequence. Finally, after the StableContact signal was achieved,
the robot lifted the object 0.3 meters upward and rotated it 1.05
radians. During the task the grasp aperture was continuously
monitored to detect crushing conditions. After the task, the
experimenter measured the translation and rotation of the
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Fig. 5. The effect of varying KSLIP and KHARDNESS. As KHARDNESS
is decreased away from the tuned value, objects tend to slip within the grasp
due to inadequate initial grip forces. As KHARDNESS is increased, the grip
force is overestimated, and crushing occurs. As KSLIP is decreased, the robot
does not respond strongly enough to slip events, and the object is allowed
to slip an unacceptable amount. As KSLIP is increased, the robot tends to
overcompensate and crush objects.

object to determine whether slip had occurred. This experiment
was repeated ten times for all combinations of five values of
KSLIP and five values of KHARDNESS, for a total of 250
trials. The five different values for KSLIP and KHARDNESS
were selected such that they caused the controller response to
vary between the two extremes of crushing and slipping. The
resulting state of each grasping attempt was recorded as either
crushed, slipped (which included object drops), or successful.
These results are presented in Fig. 5. Setting KSLIP and
KHARDNESS to the central values, as listed in Table II, yields
a system that is very likely to succeed at grasping. Small
deviations away from the ideal parameter values can often
yield somewhat successful grasp behavior, but they typically
increase the likelihood for slip and/or crush results. Large
deviations from the ideal parameter values result in completely
unsuccessful grasp results, as defined by our strict crushing
and slipping metrics. Very large value for KHARDNESS
will cause the robot to saturate its grip force, resulting in
the tightest possible grasp. In practice, this parameter space
can be sparsely sampled during tuning, but it should be
explored completely to obtain a thorough understanding of
the parameter interaction as seen here.

B. Grip Force Estimation During Loading

As described in Section V-B, the controller in the Load
phase selects the target grip force based on the maximum force
measured during the gripper’s initial contact with the object,
normalized by contact speed. We evaluated this technique
through grasp testing on eight different objects: a paper cup, a
paperboard tea box, a ripe banana, an empty soda can, a raw
chicken egg, a tennis ball, a glass bottle, and a full soda can.

We began the experiment by obtaining ground-truth mea-
surements of the minimum grip force necessary for the PR2 to
lift each object. These tests were done by placing each object
in a known location and orientation on a table. The robot then
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Fig. 6. The target grip force chosen by our Load method when grasping
eight everyday objects. The gain KHARDNESS was empirically tuned to
yield a grip force (red bar) that is consistently above the minimum grip
force necessary to lift the object (blue bar). This calculation provides a
good estimate for a large range of objects, but one can see its tendency to
overestimate the force necessary to hold objects that are both hard and light,
such as the egg. The red × symbol marks the crushing force for all objects
that can be crushed by the robot gripper.

closed its gripper on the object using only the force controller
described in equations (5)–(7), with the desired force Fg,des

set to a small value (starting between 0.5 N and 6 N, depending
on the object.) The robot then used its arm joints to move the
gripper up by 10 cm. If slip occurred during lifting, the trial
was repeated with the grasp force incremented by 0.1 N. If the
object did not slip, the desired grip force was recorded as the
minimum grip force needed for lifting. This entire process was
repeated eight times per object. The blue “Minimum Force”
bars in Fig. 6 show the mean and standard deviation of the
eight ground truth measurements for each of the eight objects.

The experiment was then repeated using the grasp controller
described in this paper. We performed eight trials with each
of the same eight objects, located in the same position and
orientation as before. For each trial, the desired loading force
Fc was recorded, as calculated with (10). The dark red “Grip
Force” bars in Fig. 6 show the mean and standard deviation
of the eight grip force levels that the robot chose during the
Load phase for each of the eight test objects.

Lastly, we determined the force necessary to crush each
object (if crushing was possible) by successively incrementing
the force controller’s desired grip force by 0.1 N. Only a
single recording was done for the crushing force because this
operation damages the object. These crush force measurements
appear as red X’s with the other results in Fig. 6. In all cases,
our controller chose a grip force above the minimum level
needed to avoid slip. For crushable objects, it chose grip forces
well below the crush limit for all objects except the egg, which
it crushed in three of the eight trials.

C. Slip Response During Lift and Hold

We conducted a separate experiment to test slip compensa-
tion in the Lift and Hold phase. As described in Section V-C,
Lift and Hold uses the force controller to try to maintain a
constant target grasp force; it watches for Slip events, which
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Fig. 7. Slip test results for three different trials. The glass cup was repeatedly
filled with marbles to promote slip at a variety of grip force levels. The ground
truth data (red dashed line) indicates the minimum grip force needed to prevent
slip. As seen here, our Lift and Hold controller has been designed to grasp
objects more tightly when it detects slip. This behavior reduces the likelihood
of dropped an object without requiring unnecessarily high grasp forces.

are derived from the pressure transducer data, and it responds
by increasing the target grasp force by a small percentage.

We sought to understand our system’s slip response by
having the gripper hold a smooth straight-sided object that
periodically increased in weight. At the start of this exper-
iment, the cylindrical section of a glass cup was placed in
the robot gripper, as seen in the inset of Fig. 7. The weight
of the cup was measured to be 0.6 N, and it was oriented
vertically. The experimenter began a trial by activating the Lift
and Hold controller with an initial desired grip force of 5 N.
Batches of fifteen marbles (about 0.6 N per batch) were then
added to the cup at intervals of three seconds. The gripper was
lightly shaken for two seconds after each batch of marbles was
added, during which time the controller reacted to any detected
Slip events. The final selected grip force value was recorded
in software before the experimenter added another batch of
marbles. The marbles were added five times to give the cup
a final weight of approximately 3.7 N. This procedure was
repeated three times to produce the data shown in the solid
traces of Fig. 7.

This test’s ground truth data was obtained for each of the
six cup weights using the force controller of Section IV-D.
The controller’s desired grip force was started at 1.0 N. After
the cup was grasped by the robot, the experimenter lightly
shook the gripper to emulate the slight disturbances that occur
during arm motion. If the cup fell out of the gripper or slipped
after two seconds of shaking, the trial was repeated with a
grasp force incremented by 0.1 N. The grasp force needed to
hold the cup at each of the six weights is shown by the red
dashed “Minimum Grip Force” line in Fig. 7. One can see
that this value increases up to an object weight of about 2.5 N
and then levels off at approximately 8.3 N. The controller
always chose a grip force value above the level needed to
prevent slip. The variation between the three trials is primarily
due to differences in how the experimenter shook the gripper;
stronger external disturbances cause more corrective actions
and higher grip force levels.
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Fig. 6. The target grip force chosen by our Load method when grasping
eight everyday objects. The gain KHARDNESS was empirically tuned to
yield a grip force (red bar) that is consistently above the minimum grip
force necessary to lift the object (blue bar). This calculation provides a
good estimate for a large range of objects, but one can see its tendency to
overestimate the force necessary to hold objects that are both hard and light,
such as the egg. The red × symbol marks the crushing force for all objects
that can be crushed by the robot gripper.

closed its gripper on the object using only the force controller
described in equations (5)–(7), with the desired force Fg,des

set to a small value (starting between 0.5 N and 6 N, depending
on the object.) The robot then used its arm joints to move the
gripper up by 10 cm. If slip occurred during lifting, the trial
was repeated with the grasp force incremented by 0.1 N. If the
object did not slip, the desired grip force was recorded as the
minimum grip force needed for lifting. This entire process was
repeated eight times per object. The blue “Minimum Force”
bars in Fig. 6 show the mean and standard deviation of the
eight ground truth measurements for each of the eight objects.

The experiment was then repeated using the grasp controller
described in this paper. We performed eight trials with each
of the same eight objects, located in the same position and
orientation as before. For each trial, the desired loading force
Fc was recorded, as calculated with (10). The dark red “Grip
Force” bars in Fig. 6 show the mean and standard deviation
of the eight grip force levels that the robot chose during the
Load phase for each of the eight test objects.

Lastly, we determined the force necessary to crush each
object (if crushing was possible) by successively incrementing
the force controller’s desired grip force by 0.1 N. Only a
single recording was done for the crushing force because this
operation damages the object. These crush force measurements
appear as red X’s with the other results in Fig. 6. In all cases,
our controller chose a grip force above the minimum level
needed to avoid slip. For crushable objects, it chose grip forces
well below the crush limit for all objects except the egg, which
it crushed in three of the eight trials.

C. Slip Response During Lift and Hold

We conducted a separate experiment to test slip compensa-
tion in the Lift and Hold phase. As described in Section V-C,
Lift and Hold uses the force controller to try to maintain a
constant target grasp force; it watches for Slip events, which
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Fig. 7. Slip test results for three different trials. The glass cup was repeatedly
filled with marbles to promote slip at a variety of grip force levels. The ground
truth data (red dashed line) indicates the minimum grip force needed to prevent
slip. As seen here, our Lift and Hold controller has been designed to grasp
objects more tightly when it detects slip. This behavior reduces the likelihood
of dropped an object without requiring unnecessarily high grasp forces.

are derived from the pressure transducer data, and it responds
by increasing the target grasp force by a small percentage.

We sought to understand our system’s slip response by
having the gripper hold a smooth straight-sided object that
periodically increased in weight. At the start of this exper-
iment, the cylindrical section of a glass cup was placed in
the robot gripper, as seen in the inset of Fig. 7. The weight
of the cup was measured to be 0.6 N, and it was oriented
vertically. The experimenter began a trial by activating the Lift
and Hold controller with an initial desired grip force of 5 N.
Batches of fifteen marbles (about 0.6 N per batch) were then
added to the cup at intervals of three seconds. The gripper was
lightly shaken for two seconds after each batch of marbles was
added, during which time the controller reacted to any detected
Slip events. The final selected grip force value was recorded
in software before the experimenter added another batch of
marbles. The marbles were added five times to give the cup
a final weight of approximately 3.7 N. This procedure was
repeated three times to produce the data shown in the solid
traces of Fig. 7.

This test’s ground truth data was obtained for each of the
six cup weights using the force controller of Section IV-D.
The controller’s desired grip force was started at 1.0 N. After
the cup was grasped by the robot, the experimenter lightly
shook the gripper to emulate the slight disturbances that occur
during arm motion. If the cup fell out of the gripper or slipped
after two seconds of shaking, the trial was repeated with a
grasp force incremented by 0.1 N. The grasp force needed to
hold the cup at each of the six weights is shown by the red
dashed “Minimum Grip Force” line in Fig. 7. One can see
that this value increases up to an object weight of about 2.5 N
and then levels off at approximately 8.3 N. The controller
always chose a grip force value above the level needed to
prevent slip. The variation between the three trials is primarily
due to differences in how the experimenter shook the gripper;
stronger external disturbances cause more corrective actions
and higher grip force levels.
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Fig. 6. The target grip force chosen by our Load method when grasping
eight everyday objects. The gain KHARDNESS was empirically tuned to
yield a grip force (red bar) that is consistently above the minimum grip
force necessary to lift the object (blue bar). This calculation provides a
good estimate for a large range of objects, but one can see its tendency to
overestimate the force necessary to hold objects that are both hard and light,
such as the egg. The red × symbol marks the crushing force for all objects
that can be crushed by the robot gripper.

closed its gripper on the object using only the force controller
described in equations (5)–(7), with the desired force Fg,des

set to a small value (starting between 0.5 N and 6 N, depending
on the object.) The robot then used its arm joints to move the
gripper up by 10 cm. If slip occurred during lifting, the trial
was repeated with the grasp force incremented by 0.1 N. If the
object did not slip, the desired grip force was recorded as the
minimum grip force needed for lifting. This entire process was
repeated eight times per object. The blue “Minimum Force”
bars in Fig. 6 show the mean and standard deviation of the
eight ground truth measurements for each of the eight objects.

The experiment was then repeated using the grasp controller
described in this paper. We performed eight trials with each
of the same eight objects, located in the same position and
orientation as before. For each trial, the desired loading force
Fc was recorded, as calculated with (10). The dark red “Grip
Force” bars in Fig. 6 show the mean and standard deviation
of the eight grip force levels that the robot chose during the
Load phase for each of the eight test objects.

Lastly, we determined the force necessary to crush each
object (if crushing was possible) by successively incrementing
the force controller’s desired grip force by 0.1 N. Only a
single recording was done for the crushing force because this
operation damages the object. These crush force measurements
appear as red X’s with the other results in Fig. 6. In all cases,
our controller chose a grip force above the minimum level
needed to avoid slip. For crushable objects, it chose grip forces
well below the crush limit for all objects except the egg, which
it crushed in three of the eight trials.

C. Slip Response During Lift and Hold

We conducted a separate experiment to test slip compensa-
tion in the Lift and Hold phase. As described in Section V-C,
Lift and Hold uses the force controller to try to maintain a
constant target grasp force; it watches for Slip events, which
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Fig. 7. Slip test results for three different trials. The glass cup was repeatedly
filled with marbles to promote slip at a variety of grip force levels. The ground
truth data (red dashed line) indicates the minimum grip force needed to prevent
slip. As seen here, our Lift and Hold controller has been designed to grasp
objects more tightly when it detects slip. This behavior reduces the likelihood
of dropped an object without requiring unnecessarily high grasp forces.

are derived from the pressure transducer data, and it responds
by increasing the target grasp force by a small percentage.

We sought to understand our system’s slip response by
having the gripper hold a smooth straight-sided object that
periodically increased in weight. At the start of this exper-
iment, the cylindrical section of a glass cup was placed in
the robot gripper, as seen in the inset of Fig. 7. The weight
of the cup was measured to be 0.6 N, and it was oriented
vertically. The experimenter began a trial by activating the Lift
and Hold controller with an initial desired grip force of 5 N.
Batches of fifteen marbles (about 0.6 N per batch) were then
added to the cup at intervals of three seconds. The gripper was
lightly shaken for two seconds after each batch of marbles was
added, during which time the controller reacted to any detected
Slip events. The final selected grip force value was recorded
in software before the experimenter added another batch of
marbles. The marbles were added five times to give the cup
a final weight of approximately 3.7 N. This procedure was
repeated three times to produce the data shown in the solid
traces of Fig. 7.

This test’s ground truth data was obtained for each of the
six cup weights using the force controller of Section IV-D.
The controller’s desired grip force was started at 1.0 N. After
the cup was grasped by the robot, the experimenter lightly
shook the gripper to emulate the slight disturbances that occur
during arm motion. If the cup fell out of the gripper or slipped
after two seconds of shaking, the trial was repeated with a
grasp force incremented by 0.1 N. The grasp force needed to
hold the cup at each of the six weights is shown by the red
dashed “Minimum Grip Force” line in Fig. 7. One can see
that this value increases up to an object weight of about 2.5 N
and then levels off at approximately 8.3 N. The controller
always chose a grip force value above the level needed to
prevent slip. The variation between the three trials is primarily
due to differences in how the experimenter shook the gripper;
stronger external disturbances cause more corrective actions
and higher grip force levels.
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Fig. 6. The target grip force chosen by our Load method when grasping
eight everyday objects. The gain KHARDNESS was empirically tuned to
yield a grip force (red bar) that is consistently above the minimum grip
force necessary to lift the object (blue bar). This calculation provides a
good estimate for a large range of objects, but one can see its tendency to
overestimate the force necessary to hold objects that are both hard and light,
such as the egg. The red × symbol marks the crushing force for all objects
that can be crushed by the robot gripper.

closed its gripper on the object using only the force controller
described in equations (5)–(7), with the desired force Fg,des

set to a small value (starting between 0.5 N and 6 N, depending
on the object.) The robot then used its arm joints to move the
gripper up by 10 cm. If slip occurred during lifting, the trial
was repeated with the grasp force incremented by 0.1 N. If the
object did not slip, the desired grip force was recorded as the
minimum grip force needed for lifting. This entire process was
repeated eight times per object. The blue “Minimum Force”
bars in Fig. 6 show the mean and standard deviation of the
eight ground truth measurements for each of the eight objects.

The experiment was then repeated using the grasp controller
described in this paper. We performed eight trials with each
of the same eight objects, located in the same position and
orientation as before. For each trial, the desired loading force
Fc was recorded, as calculated with (10). The dark red “Grip
Force” bars in Fig. 6 show the mean and standard deviation
of the eight grip force levels that the robot chose during the
Load phase for each of the eight test objects.

Lastly, we determined the force necessary to crush each
object (if crushing was possible) by successively incrementing
the force controller’s desired grip force by 0.1 N. Only a
single recording was done for the crushing force because this
operation damages the object. These crush force measurements
appear as red X’s with the other results in Fig. 6. In all cases,
our controller chose a grip force above the minimum level
needed to avoid slip. For crushable objects, it chose grip forces
well below the crush limit for all objects except the egg, which
it crushed in three of the eight trials.

C. Slip Response During Lift and Hold

We conducted a separate experiment to test slip compensa-
tion in the Lift and Hold phase. As described in Section V-C,
Lift and Hold uses the force controller to try to maintain a
constant target grasp force; it watches for Slip events, which
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Fig. 7. Slip test results for three different trials. The glass cup was repeatedly
filled with marbles to promote slip at a variety of grip force levels. The ground
truth data (red dashed line) indicates the minimum grip force needed to prevent
slip. As seen here, our Lift and Hold controller has been designed to grasp
objects more tightly when it detects slip. This behavior reduces the likelihood
of dropped an object without requiring unnecessarily high grasp forces.

are derived from the pressure transducer data, and it responds
by increasing the target grasp force by a small percentage.

We sought to understand our system’s slip response by
having the gripper hold a smooth straight-sided object that
periodically increased in weight. At the start of this exper-
iment, the cylindrical section of a glass cup was placed in
the robot gripper, as seen in the inset of Fig. 7. The weight
of the cup was measured to be 0.6 N, and it was oriented
vertically. The experimenter began a trial by activating the Lift
and Hold controller with an initial desired grip force of 5 N.
Batches of fifteen marbles (about 0.6 N per batch) were then
added to the cup at intervals of three seconds. The gripper was
lightly shaken for two seconds after each batch of marbles was
added, during which time the controller reacted to any detected
Slip events. The final selected grip force value was recorded
in software before the experimenter added another batch of
marbles. The marbles were added five times to give the cup
a final weight of approximately 3.7 N. This procedure was
repeated three times to produce the data shown in the solid
traces of Fig. 7.

This test’s ground truth data was obtained for each of the
six cup weights using the force controller of Section IV-D.
The controller’s desired grip force was started at 1.0 N. After
the cup was grasped by the robot, the experimenter lightly
shook the gripper to emulate the slight disturbances that occur
during arm motion. If the cup fell out of the gripper or slipped
after two seconds of shaking, the trial was repeated with a
grasp force incremented by 0.1 N. The grasp force needed to
hold the cup at each of the six weights is shown by the red
dashed “Minimum Grip Force” line in Fig. 7. One can see
that this value increases up to an object weight of about 2.5 N
and then levels off at approximately 8.3 N. The controller
always chose a grip force value above the level needed to
prevent slip. The variation between the three trials is primarily
due to differences in how the experimenter shook the gripper;
stronger external disturbances cause more corrective actions
and higher grip force levels.

Slip Reaction Testing
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Fig. 6. Slip test results for three different trials. The glass cup was repeatedly
filled with marbles to promote slip at a variety of grip force levels. The ground
truth data (red dashed line) indicates the minimum grip force needed to prevent
slip. As seen here, our Lift and Hold controller has been designed to grasp
objects more tightly when it detects slip. This behavior reduces the likelihood
of dropped an object without requiring unnecessarily high grasp forces.

We sought to understand our system’s slip response by
having the gripper hold a smooth straight-sided object that
periodically increased in weight. At the start of this exper-
iment, the cylindrical section of a glass cup was placed in
the robot gripper, as seen in the inset of Fig. 6. The weight
of the cup was measured to be 0.6 N, and it was oriented
vertically. The experimenter began a trial by activating the Lift
and Hold controller with an initial desired grip force of 5 N.
Batches of fifteen marbles (about 0.6 N per batch) were then
added to the cup at intervals of three seconds. The gripper was
lightly shaken for two seconds after each batch of marbles was
added, during which time the controller reacted to any detected
Slip events. The final selected grip force value was recorded
in software before the experimenter added another batch of
marbles. The marbles were added five times to give the cup
a final weight of approximately 3.7 N. This procedure was
repeated three times to produce the data shown in the solid
traces of Fig. 6.

This test’s ground truth data was obtained for each of the
six cup weights using the force controller of Section IV-D.
The controller’s desired grip force was started at 1.0 N. After
the cup was grasped by the robot, the experimenter lightly
shook the gripper to emulate the slight disturbances that occur
during arm motion. If the cup fell out of the gripper or slipped
more than 5 mm after two seconds of shaking, the trial was
repeated with a grasp force incremented by 0.1 N. The grasp
force needed to hold the cup at each of the six weights is
shown by the red dashed “Minimum Grip Force” line in Fig. 6.
One can see that this value increases up to an object weight
of about 2.5 N and then levels off at approximately 8.3 N.
The controller always chose a grip force value above the
level needed to prevent slip, which helps validate our human-
inspired approach to gripping unknown objects. The variation
between the three trials is primarily due to differences in
how the experimenter shook the gripper; stronger external
disturbances cause more corrective actions and higher grip
force levels.

Fig. 7. The 50 objects used in our robustness test. These objects were
chosen for no specific reason except that they have a wide range of properties
including; hard/soft, heavy/light, sticky/slippery, brittle/elastic.

TABLE III
OUTCOMES OF GRASP TESTING WITH EVERYDAY OBJECTS.

100% Motor Effort Our Methods
Crushed 30/30 1/30

Rotated Within Grasp 5/50 9/50
Slipped Within Grasp 2/50 4/50

Dropped 2/50 4/50

C. Grasping Robustness

Beyond testing specific aspects of our controller’s perfor-
mance, we wanted to understand how the methods proposed
in this paper would work on their intended subject, everyday
real-world objects. We thus gathered the collection of 50
common objects shown in Fig. 7, purposefully seeking out
items that could be challenging for a robot to grasp. The
only requirement on these objects is that they are all within
the robot’s perception and manipulation capabilities (have at
least one grasp location that is less than the size of the max-
imum gripper aperture, weight less than the arm’s maximum
payload, etc.). The objects included in the collection are as
follows: apple, banana (rotten), Band-Aid box, beer bottle
(empty), beer bottle (full), can of Spam, can of peas, candle,
cereal box (empty), Coffee-mate bottle, duct tape roll, foam
ball, gum container, Jello cup, juice box, large plastic bowl,
magic marker, masking tape roll, medicine bottle, milk carton
(empty), office tape dispenser (heavy), ointment tube (full),
peach (soft), plastic juice bottle (empty), plastic juice bottle
(full), plum (rotten), rubber football, Solo plastic cup, Saran
wrap box, ShiKai shampoo bottle (empty), small wooden
bowl, soap bottle (empty), soap box (full), soda can (empty),
soda can (full), soup can (full), stress ball, stuffed bear, stuffed
elephant, Suave shampoo bottle (empty), sunglasses case, tea
box (metal), tea box (paperboard), tennis ball, thin plastic cup,
Tide bottle (full), towel, Vasoline container (full), water bottle
(empty), and wood plank.

The robot’s task for this experiment was to pick up each
object from a table and set it down in a different location.
We used the object perception and motion planning code
of Hsiao et al. to enable the PR2 to accomplish this task
autonomously [14]. The grasp selection and reactive grasping
components of [14] were used to select stable grasps, with
the object centered within the grasp before starting, as per our
assumptions for the Close phase. After grasping the object,
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Fig. 6. Slip test results for three different trials. The glass cup was repeatedly
filled with marbles to promote slip at a variety of grip force levels. The ground
truth data (red dashed line) indicates the minimum grip force needed to prevent
slip. As seen here, our Lift and Hold controller has been designed to grasp
objects more tightly when it detects slip. This behavior reduces the likelihood
of dropped an object without requiring unnecessarily high grasp forces.

We sought to understand our system’s slip response by
having the gripper hold a smooth straight-sided object that
periodically increased in weight. At the start of this exper-
iment, the cylindrical section of a glass cup was placed in
the robot gripper, as seen in the inset of Fig. 6. The weight
of the cup was measured to be 0.6 N, and it was oriented
vertically. The experimenter began a trial by activating the Lift
and Hold controller with an initial desired grip force of 5 N.
Batches of fifteen marbles (about 0.6 N per batch) were then
added to the cup at intervals of three seconds. The gripper was
lightly shaken for two seconds after each batch of marbles was
added, during which time the controller reacted to any detected
Slip events. The final selected grip force value was recorded
in software before the experimenter added another batch of
marbles. The marbles were added five times to give the cup
a final weight of approximately 3.7 N. This procedure was
repeated three times to produce the data shown in the solid
traces of Fig. 6.

This test’s ground truth data was obtained for each of the
six cup weights using the force controller of Section IV-D.
The controller’s desired grip force was started at 1.0 N. After
the cup was grasped by the robot, the experimenter lightly
shook the gripper to emulate the slight disturbances that occur
during arm motion. If the cup fell out of the gripper or slipped
more than 5 mm after two seconds of shaking, the trial was
repeated with a grasp force incremented by 0.1 N. The grasp
force needed to hold the cup at each of the six weights is
shown by the red dashed “Minimum Grip Force” line in Fig. 6.
One can see that this value increases up to an object weight
of about 2.5 N and then levels off at approximately 8.3 N.
The controller always chose a grip force value above the
level needed to prevent slip, which helps validate our human-
inspired approach to gripping unknown objects. The variation
between the three trials is primarily due to differences in
how the experimenter shook the gripper; stronger external
disturbances cause more corrective actions and higher grip
force levels.

Fig. 7. The 50 objects used in our robustness test. These objects were
chosen for no specific reason except that they have a wide range of properties
including; hard/soft, heavy/light, sticky/slippery, brittle/elastic.

TABLE III
OUTCOMES OF GRASP TESTING WITH EVERYDAY OBJECTS.

100% Motor Effort Our Methods
Crushed 30/30 1/30

Rotated Within Grasp 5/50 9/50
Slipped Within Grasp 2/50 4/50

Dropped 2/50 4/50

C. Grasping Robustness

Beyond testing specific aspects of our controller’s perfor-
mance, we wanted to understand how the methods proposed
in this paper would work on their intended subject, everyday
real-world objects. We thus gathered the collection of 50
common objects shown in Fig. 7, purposefully seeking out
items that could be challenging for a robot to grasp. The
only requirement on these objects is that they are all within
the robot’s perception and manipulation capabilities (have at
least one grasp location that is less than the size of the max-
imum gripper aperture, weight less than the arm’s maximum
payload, etc.). The objects included in the collection are as
follows: apple, banana (rotten), Band-Aid box, beer bottle
(empty), beer bottle (full), can of Spam, can of peas, candle,
cereal box (empty), Coffee-mate bottle, duct tape roll, foam
ball, gum container, Jello cup, juice box, large plastic bowl,
magic marker, masking tape roll, medicine bottle, milk carton
(empty), office tape dispenser (heavy), ointment tube (full),
peach (soft), plastic juice bottle (empty), plastic juice bottle
(full), plum (rotten), rubber football, Solo plastic cup, Saran
wrap box, ShiKai shampoo bottle (empty), small wooden
bowl, soap bottle (empty), soap box (full), soda can (empty),
soda can (full), soup can (full), stress ball, stuffed bear, stuffed
elephant, Suave shampoo bottle (empty), sunglasses case, tea
box (metal), tea box (paperboard), tennis ball, thin plastic cup,
Tide bottle (full), towel, Vasoline container (full), water bottle
(empty), and wood plank.

The robot’s task for this experiment was to pick up each
object from a table and set it down in a different location.
We used the object perception and motion planning code
of Hsiao et al. to enable the PR2 to accomplish this task
autonomously [14]. The grasp selection and reactive grasping
components of [14] were used to select stable grasps, with
the object centered within the grasp before starting, as per our
assumptions for the Close phase. After grasping the object,
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Fig. 6. Slip test results for three different trials. The glass cup was repeatedly
filled with marbles to promote slip at a variety of grip force levels. The ground
truth data (red dashed line) indicates the minimum grip force needed to prevent
slip. As seen here, our Lift and Hold controller has been designed to grasp
objects more tightly when it detects slip. This behavior reduces the likelihood
of dropped an object without requiring unnecessarily high grasp forces.

We sought to understand our system’s slip response by
having the gripper hold a smooth straight-sided object that
periodically increased in weight. At the start of this exper-
iment, the cylindrical section of a glass cup was placed in
the robot gripper, as seen in the inset of Fig. 6. The weight
of the cup was measured to be 0.6 N, and it was oriented
vertically. The experimenter began a trial by activating the Lift
and Hold controller with an initial desired grip force of 5 N.
Batches of fifteen marbles (about 0.6 N per batch) were then
added to the cup at intervals of three seconds. The gripper was
lightly shaken for two seconds after each batch of marbles was
added, during which time the controller reacted to any detected
Slip events. The final selected grip force value was recorded
in software before the experimenter added another batch of
marbles. The marbles were added five times to give the cup
a final weight of approximately 3.7 N. This procedure was
repeated three times to produce the data shown in the solid
traces of Fig. 6.

This test’s ground truth data was obtained for each of the
six cup weights using the force controller of Section IV-D.
The controller’s desired grip force was started at 1.0 N. After
the cup was grasped by the robot, the experimenter lightly
shook the gripper to emulate the slight disturbances that occur
during arm motion. If the cup fell out of the gripper or slipped
more than 5 mm after two seconds of shaking, the trial was
repeated with a grasp force incremented by 0.1 N. The grasp
force needed to hold the cup at each of the six weights is
shown by the red dashed “Minimum Grip Force” line in Fig. 6.
One can see that this value increases up to an object weight
of about 2.5 N and then levels off at approximately 8.3 N.
The controller always chose a grip force value above the
level needed to prevent slip, which helps validate our human-
inspired approach to gripping unknown objects. The variation
between the three trials is primarily due to differences in
how the experimenter shook the gripper; stronger external
disturbances cause more corrective actions and higher grip
force levels.

Fig. 7. The 50 objects used in our robustness test. These objects were
chosen for no specific reason except that they have a wide range of properties
including; hard/soft, heavy/light, sticky/slippery, brittle/elastic.

TABLE III
OUTCOMES OF GRASP TESTING WITH EVERYDAY OBJECTS.

100% Motor Effort Our Methods
Crushed 30/30 1/30

Rotated Within Grasp 5/50 9/50
Slipped Within Grasp 2/50 4/50

Dropped 2/50 4/50

C. Grasping Robustness

Beyond testing specific aspects of our controller’s perfor-
mance, we wanted to understand how the methods proposed
in this paper would work on their intended subject, everyday
real-world objects. We thus gathered the collection of 50
common objects shown in Fig. 7, purposefully seeking out
items that could be challenging for a robot to grasp. The
only requirement on these objects is that they are all within
the robot’s perception and manipulation capabilities (have at
least one grasp location that is less than the size of the max-
imum gripper aperture, weight less than the arm’s maximum
payload, etc.). The objects included in the collection are as
follows: apple, banana (rotten), Band-Aid box, beer bottle
(empty), beer bottle (full), can of Spam, can of peas, candle,
cereal box (empty), Coffee-mate bottle, duct tape roll, foam
ball, gum container, Jello cup, juice box, large plastic bowl,
magic marker, masking tape roll, medicine bottle, milk carton
(empty), office tape dispenser (heavy), ointment tube (full),
peach (soft), plastic juice bottle (empty), plastic juice bottle
(full), plum (rotten), rubber football, Solo plastic cup, Saran
wrap box, ShiKai shampoo bottle (empty), small wooden
bowl, soap bottle (empty), soap box (full), soda can (empty),
soda can (full), soup can (full), stress ball, stuffed bear, stuffed
elephant, Suave shampoo bottle (empty), sunglasses case, tea
box (metal), tea box (paperboard), tennis ball, thin plastic cup,
Tide bottle (full), towel, Vasoline container (full), water bottle
(empty), and wood plank.

The robot’s task for this experiment was to pick up each
object from a table and set it down in a different location.
We used the object perception and motion planning code
of Hsiao et al. to enable the PR2 to accomplish this task
autonomously [14]. The grasp selection and reactive grasping
components of [14] were used to select stable grasps, with
the object centered within the grasp before starting, as per our
assumptions for the Close phase. After grasping the object,
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Fig. 10. Histogram for motor effort in object marathon.

that were successfully lifted. These values range from 2.5 N
to 27.5 N with most objects below 7.5 N. The objects with
the lowest initial grasp force were the towel, the Coffee-mate
bottle, the large plastic bowl, and the stress ball, in ascending
order. The objects with the highest initial grasp force were
the wood plank, the duct tape roll, and the sunglasses case,
in descending order. From this we observe that soft objects
generally receive lower initial grip forces than hard objects,
as one would expect from the design of our controller.

Fig. 10 provides a histogram of the average motor effort
required during Lift and Hold for the 46 objects that were
not dropped. One can quickly see that our controller is much
more efficient than the naive controller, which always uses
100% motor effort. Because the PR2 gripper has high internal
friction and compliant fingertips, it can securely hold objects
such as the foam ball and the Band-Aid box with zero motor
effort. At the other end of the spectrum, the wood plank, the
duct tape roll, and the full beer bottle all had an average motor
effort of 100%.

E. Contact Sensing During Replace
Lastly, we carried out a set of tests to evaluate the ef-

fectiveness of the Slip and Vibration signals used to detect
contact between the held object and the table surface during
Replace, as described in Section V-D. Using the same grasping
procedure as the experiment with fifty objects, the PR2 robot
was programmed to detect, grasp, lift, and replace a full soda
can on a table. A sheet of pressure-sensitive film (Pressurex-
micro 2-20 PSI film) was laid on the table at the placement
location to record the pressure between the can and table.
The film darkens in color with the application of additional
pressure from 13,800 to 138,000 N/m2.

The first test consisted of 25 trials using the standard non-
contact sensing approach to object placement. The height of
the table was found from stereo camera and scanning laser
sensor data. Once the object was grasped, it was assumed to
be rigidly attached to the hand, and the robot attempted to
place the object back down at the exact height of the table
and release it. The second set of 25 trials used our contact-
sensing replace strategy to release the object once the Slip or
Vibration signal was detected. The resulting pressure-sensitive
film images can be seen in Fig. 11.

Qualitative inspection of the resulting films suggests that
our human-inspired controller is significantly more gentle than
the standard approach. When using the non-contact sensing
approach, the robot released the object in the air (prior to
contact with the table) a total of 4 out of the 25 trials, which

(a) Standard Approach (b) Our Approach

Fig. 11. Scans of the pressure-sensitive film used to capture the forces
applied by the robot to the object during object placement. Darker color
indicates regions of higher pressure. (a) The standard approach assumes
perfect knowledge of the table position and object position within the grasp,
which both contain errors that lead to forceful impacts. (b) Our approach
releases the object when table contact is detected, yielding gentler placements.
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Fig. 12. Elbow joint torque (top) and hand acceleration (bottom) comparing
the two different approaches. The standard approach exerts significantly
greater torque after the initial contact, pushing the object down into the table.

caused the object to drop onto the table. In the remaining
21 trials with the standard controller, the robot pressed the
object down into the table very firmly because the visually
estimated target location was beneath the surface of the actual
table. In contrast, our contact-sensing controller uses the tactile
sensors to detect contact with the table and release the object,
as shown in (Fig. 12). The Slip signal triggered in 4 of our
controller’s 25 trials, and the Vibration signal triggered in the
remaining 21. One Vibration-triggered release occurred prior
to contact between the object and the table due to mechanical
noise on the accelerometer, highlighting the opportunity for
further improvements in tactile signal processing during robot
motion.

VII. CONCLUSION

This article introduced a set of sensory signals and control
approaches that attempt to mimic the human reliance on
cutaneous sensations during grasping tasks. We presented a

Contact Sensing During Replace
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