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icra workshop on 
mobile manipulation

• “ask not what perception can do for 
manipulation - ask what manipulation can 
do for perception”

• (vision in particular)

2



i manipulate, 
therefore i am

• “signal-to-symbol barrier” problem

• what is an “object”? what “information” 
does an image contain about the object?

• “information theory” in the context of 
decision/control tasks
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gibson’s information
task         data = “information” & (structured) “nuisance”

information = complexity of the data after the effects of 
nuisances has been discounted

nuisances in vision:

viewpoint

illumination

visibility (occlusion, cast shadows)

quantization/noise
gibson: “my notion is that information consists of invariants underlying change [...] of 
illumination, point of observation, overlapping samples [...] and disturbance of structure”
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is a “gibsonian information 
theory” viable? (take I)

 general-case viewpoint invariants do not exist [burns et al., ’92]

 non-trivial illumination invariants do not exist [chen et al., ’00]
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is a “gibsonian information 
theory” viable? (take II)

general-case viewpoint invariants do exist, and are non-trivial, 
for lambertian scenes in ambient light [vedaldi-soatto ‘05-’06]

non-trivial contrast invariants do exist, and are sufficient 
statistics [morel & c., ’93-’05]
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what is invariant to contrast (geometry of the level lines) is not 
invariant to viewpoint

what is invariant to viewpoint (image range in a canonized 
domain) is not invariant to contrast



is a “gibsonian information 
theory” viable? (take III)

general-case viewpoint invariants exist, and are non-trivial, for 
lambertian scenes in ambient light [vedaldi-soatto ‘05-’06]

non-trivial contrast invariants exist, and are sufficient statistics 
[morel & c., ’93-’05]
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viewpoint-illumination invariants exist (ambient-lambert)

they are “discrete” structures (attributed reeb tree, ART), 
supported on a thin set

they are sufficient statistics! (equivalent to the image up to 
changes of viewpoint and contrast) [sundaramoorthi et al., ’09]



“the set of images modulo 
viewpoint and contrast changes”

[sundaramoorthi-petersen-varadarajan-soatto ’09]

• viewpoint changes induce (epipolar-homeomorphic) 
deformations of the image domain; diffeomorphic closure 
(general non-planar surfaces)

• viewpoint-contrast invariants exists

• they are (supported on) a zero-measure subset of the image 
domain (attributed reeb tree) 

• they are sufficient statistics! (equivalent to the image up to 
contrast and viewpoint transformations)
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is a “gibsonian information 
theory” viable? (take III)

general-case viewpoint invariants exist, and are non-trivial, for 
lambertian scenes in ambient light [vedaldi-soatto ‘05-’06]

non-trivial contrast invariants exist, and are sufficient statistics 
[morel & c., ’93-’05]
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occlusions and quantization admit no invariants!

viewpoint-illumination invariants exist (ambient-lambert)

they are “discrete” structures (attributed reeb tree, ART), 
supported on a thin set

they are sufficient statistics! (equivalent to the image up to 
changes of viewpoint and contrast) [sundaramoorthi et al., ’09]



some notation

scene

lambert-ambient

image

nuisance



some notation

scene

image

occlusions

lambert-ambient



some notation

scene

image

image formation model 
(formal notation)

nuisance

I = f(gξ, ν) + n



some definitions
feature

minimal sufficient statistic

sufficient statistic

loss function decision/control policy

conditional risk

invariant

maximal invariant



representation

given one or more images

ξ̂

{I} a representation

is a statistic ξ̂ = φ({I}) such that

i.e., it is a statistic from which 
the images can be hallucinated

{I} ∈ {f(gξ̂, ν), g ∈ G, ν ∈ V} .
= L(ξ̂)

complete representation
minimal complete representation

(note it is invariant to   )

L(ξ̂) = L(ξ)

G



information gap
actionable information: coding length of a maximal 
invariant statistic; can be computed from an image.

complete information: coding length of a minimal 
sufficient statistic of a (complete) representation

actionable information gap (AIG)
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I = H(φ∨(ξ̂))



invertible nuisances

invertible nuisance

contrast

viewpoint

away from occlusions



(non)invertible nuisances

visibility (occlusions, cast shadows); quantization

invertibility depends on the sensing process: control 
authority

j. j. gibson: “the occluded becomes unoccluded” in the 
process of “information pickup”



is a “gibsonian information 
theory” viable? (take IV)

general-case viewpoint invariants exist, and are non-trivial, for 
lambertian scenes in ambient light [vedaldi-soatto ‘05-’06]

non-trivial contrast invariants exist, and are sufficient statistics 
[morel & c., ’93-’05]

viewpoint-illumination invariants exist (ambient-lambert)

they are “discrete” structures (attributed reeb tree, ART), 
supported on a thin set

they are sufficient statistics! (equivalent to the image up to 
changes of viewpoint and contrast) [sundaramoorthi et al., ’09]

occlusions and quantization are invertible! [gibson ’50s]
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how to build 
representations?

1. canonizability (sparse yet lossless)

2. commutativity (beyond existing local descriptors)

3. structural stability (BIBO vs. structural stability)

4. proper sampling (beyond nyquist)

5. exploration (gibson)
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how to build representations?
feature optimality by design
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co-variant detector: a functional ψ : I ×G→ Rdim(G); (I, g) �→ ψ(I, g)

ψ(I, g) = 0 ĝ = ĝ(I)

ψ(I, ĝ) = 0 ψ(I ◦ g, ĝ ◦ g) = 0 ∀ g ∈ G

1. the zero-level set uniquely determines

II. if then

canonizable: an image region is canonizable if it admits 
at least one co-variant detector

canonized descriptor: φ(I) .= I ◦ ĝ−1(I) | ψ(I, ĝ(I)) = 0



what is the “best” descriptor? 
when is it optimal? 

1. canonizability
• Thm 1: canonized descriptors are complete 

invariant statistics (wrt canonized group)

• Thm 2: if a complete invariant descriptor can be 
constructed, an equi-variant classifier can be 
designed that attains the Bayes’ risk

• the best descriptor can be derived analytically 
(BTD)

• What about non-group nuisances?
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2. commutativity
• commutative nuisance:

• Thm 3: the only nuisances that are invertible and 
commutative are the isometric group of the 
plane and contrast range transformations

• Corollary: do not canonize scale (nor affine/
projective transformations)
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I ◦ g ◦ ν = I ◦ ν ◦ g

• (Thm 5: an image region is a texture if and only if 
it is not canonizable)



3. BIBO stability 
(sensitivity)

• BIBO sensitivity: a detector is BIBO insensitive 
(stable) if small nuisance variations cause small 
changes in the canonical element.

• Thm 6: any co-variant detector is BIBO stable

• BIBO stability is irrelevant for visual decisions!
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3. structural stability
• structural stability: small changes in the 

nuisance do not cause catastrophic 
(singular) perturbations in the detector

• design detectors by maximizing structural 
stability margins: the selection tree

24



quickshift [vedaldi-soatto ’08] 
(non-iterative, constant-time, returns entire segmentation tree)



representational (hyper)graph



iphone demo

• http://www.youtube.com/watch?v=cMv-
McHw660
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5. visual exploration

• Exploit gravity (but don’t assume you know it!)

• Visual-Inertial navigation + Community Map 
Building [E. Jones and S. Soatto, IJRR 2011]
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Inertial Only Vision Only
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Drift: 0.19% (500 m)!
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Drift: 0.27% (8 km)!
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Drift: 0.5% (30km)!
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vs GPS+IMU

GPS+Inertial

Vision+Inertial
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“location”, topology and co-visibility
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Covisibility Graph
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Adding Geometry
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Loop Closing
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“The Black Box”

!Sensor Platform
–Battery
–Computation
–D-GPS
–Stereo, Omni Cameras
–LADAR
–IMU
!Portable
–Wheels
–Vehicle
–Human



visual exploration

• occlusion detection

• myopic exploration

• memory and representation

• min(inference)-max(control) entropy
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occlusion detection

• (i) lambertian reflection (ii) constant illumination, (iii) co-
visibility: 
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I(x, t+ dt) =

�
I(w(x, t), t) + n(x, t) x ∈ D\Ω(d, dt)
ν(x, t), x ∈ Ω(t, dt)

small   dense

large   sparse Ω → ∅dt → 0

Ω̂, ŵ = argmin �ν�0 + λ�n�1

re-weighted �1

[ayvaci-raptis-soatto nips ’10]

nesterov vs. split-bregman
w/ isotropic reg. TV forw
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Occlusions
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occlusion detection

• code at http://vision.ucla.edu/~ayvaci/occlusion-detection
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detachable object 
detection

• “efficient model selection for detachable object 
detection”, proc. of EMMCVPR, July 2011
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building a representation:
perceptual explorers
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




ξ̂t+dt = ξ̂t ⊕ �(It+dt, t+ dt; ût, ξ̂t)

ût = argmaxu H(�(It, t;u, ξ̂t))

ξ̂0 = h
−1(I0)





what’s peculiar about vision?

• scaling makes continuous limit relevant

• occlusions make mobility/control relevant

• phenomena critical in any remote sensing modality 
(EO, IR, MS, radar, laser, lidar, TOF, ...)
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