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Abstract— To enable autonomous manipulation of previously
unseen objects, robots must possess perceptual capabilities
for modeling objects in their environment and for observing
their motion during manipulation. Towards this objective, we
present a robust perceptual skill for identifying, tracking, and
segmenting objects in unstructured scenes. This skill is based
on a principled and computationally efficient framework for
integrating information from multiple visual clues to yield an
accurate and robust segmentation, even under arbitrary object
motion. Further, we present an interactive perception skill that
provides an additional perceptual clue that greatly increases
the generality and robustness of segmentation. The resulting
perceptual skill is suitable for autonomous manipulation in
unstructured environments. We validate this statement in real-
world experiments on a mobile manipulation platform with
multiple rigid articulated objects.

I. INTRODUCTION

We present a perceptual skill in support of manipulation
in unstructured environments. In such environments, suc-
cessful manipulation requires that a robot be able to iden-
tify and segment the articulated objects to be manipulated;
furthermore, the robot must be able to track the motion
of the manipulated objects so as to obtain visual feedback
throughout the manipulation. As this perceptual skill targets
applications in unstructured environments, it must not rely
on prior knowledge of the objects to be manipulated.

The assumption that no prior knowledge is available poses
substantial challenges for visual perception. First, without
any prior knowledge the information contained in a static
image does not suffice for identification and segmentation
of manipulable objects. Segmentations of images containing
a single object often consist of multiple distinct regions, as
objects can contain parts with different colors or textures.
Furthermore, some object parts may be difficult to distinguish
from the background. Second, without any prior knowledge
the information contained in a single image does not suffice
to identify the degrees of freedom of an object. Knowledge
of the degrees of freedom is necessary for manipulation of
articulated objects, such as scissors, doors, or drawers. Third,
the lack of prior knowledge makes it difficult to track the
manipulated object as it undergoes arbitrary 3D translation
and rotation. During motion, the silhouette of an object
can undergo discontinuous changes, making tracking of the
contour difficult. To the best of our knowledge, no perceptual
skill exists that overcomes these challenges.

In this paper, we describe a perceptual skill that identifies
articulated objects, segments them from the background,
and tracks the obtained segmentation throughout arbitrary

Fig. 1. Our Mobile Manipulator interacts with a train toy, and identifies a
set of rigid bodies: train engine, train car, and wooden figures. These rigid
bodies are segmented from the background throughout the interaction.

motions of the object, including the motion of internal
degrees of freedom of articulated objects. To achieve this,
we rely on two insights. First, we leverage and combine
multiple visual clues to perform image segmentation. Among
these, the most important clue for segmentation is derived
from deliberate interactions of the robot with the object to
be segmented. Through this interactive perception, the robot
reveals the visual signal required to appropriately identify
pertinent object boundaries and to discover the kinematic
relationships between object parts. Second, we chose to focus
on segmenting individual objects, rather than segmenting
an entire scene. This allows us to overcome many of the
limitations of traditional segmentation algorithms.

The proposed perceptual skill identifies, segments, and
tracks objects of arbitrary size, shape, color, and texture in
uncontrolled lighting conditions, while being computation-
ally efficient. It complements our prior work on perceiving
the kinematic structure of an arbitrary object with a dense
representation of the object. It is therefore key in enabling
manipulation. The versatility and robustness of the skill
depend on two assumptions. First, it assumes that objects
possess reliably perceivable texture (this limitation is shared
by all vision algorithms). Second, the skill currently relies
on scripted physical interactions with objects. This limitation
will be removed in future work, similar to our work on
perceiving planar articulated objects [15].



Fig. 2. An example of everyday articulated objects. Our robot has interacted
and segmented these objects in multiple configurations. The objects differ
in size, shape, color, texture and their kinematic structure. Segmenting them
in 3D provides the robot with necessary information for manipulation.

II. RELATED WORK

Segmentation algorithms fall into one of two cate-
gories [10], [27]. Image segmentation divides an entire
image into spatially contiguous regions that share a particular
property. Object segmentation extracts a single object from
the background.

A. Image Segmentation

Image segmentation methods process an image to identify
boundaries between regions that share a particular property.
All of the methods in this category are based on the
assumption that the boundaries of objects correspond to
discontinuities in color, texture, brightness or depth—and
that these discontinuities do not occur anywhere else.

Most methods rely on thresholding, edge detection, clus-
tering, or region growing to group pixels based on brightness,
color, or texture [10]. Other methods use parallax [2] to
compute depth values for each pixel and subsequently apply
segmentation algorithms to this depth image.

The fundamental assumption underlying these methods—
namely, that discontinuities of an image property indicates
object boundaries—does not capture the notion of object for
the purpose of manipulation. In manipulation, an object is a
connected set of bodies. The boundary of such an object and
the boundaries determined by mentioned image properties
rarely coincide, especially when attempting to segment an
entire image containing many objects.

B. Object Segmentation

Object segmentation focuses on segmenting a single object
in an image, rather than segmenting the entire image. By fo-
cusing on a single object and thus a local region of the image,
the difficulty of finding good global segmentation parameters
is avoided. The key to object segmentation is the selection of
an initial hypothesis about the image region occupied by the
object to be segmented. This region is generally specified by
a fixation point, assumed to lie inside the object boundary.
Starting from this fixation point, methods determine a local
segmentation enclosing the fixation point.

The easiest way of specify a fixation point is human
input (clicking on the image) [20]. However, this method
is not suitable for autonomous manipulation. Kootstra et
al. [11] suggest to identify fixation points based on object
symmetry, where symmetry is determined using classical
computer vision techniques. And Campbell et al. [3] assume
that the camera can keep the object of interest in the middle
of the frame, so that the center of the image serves as
a fixation point. These methods for determining fixation
points are computationally efficient and provide good results.
However, they rely on assumptions that may not hold during
manipulation tasks: objects may not be symmetric or may
not be located in the center of the image. Furthermore, these
method do not overcome the fundamental limitation of image
segmentation: the properties used to segment an object do not
necessarily coincide with “object-ness”.

If, for the purpose of manipulation, we define objects
as connected sets of bodies, successful segmentation must
reveal this connectedness of bodies in the scene (here, we
limit ourselves to rigid bodies). Consequently, we can obtain
information about “object-ness” as well as adequate fixation
points by analyzing a sequence of images in which objects
move relative to each other. This can be accomplished
using optical flow, statistical methods, wavelet transforms,
and factorization methods. Optical flow methods identify
distinct image regions based on their perceived motion in
the image plane [28]. Statistical methods treat segmentation
as a classification problem in which each pixel is classified
as belonging to a particular cluster or object [6], [21], [22],
[23]. Wavelet transforms analyze the different frequencies
of an image to detect motion [17], [25]. Factorization tech-
niques use information about the structure and motion of
objects based on the motion of features tracked throughout
a sequence of images [5], [12], [26].

All of these methods make assumptions about the object or
the environment that limit their applicability to manipulation.
The assumptions differ by method. Statistical methods, for
example, rely on prior knowledge about the scene [22], [23]
or the objects it contains [21]. Factorization approaches are
computationally complex and depend on a relatively long
sequence of images [5], [12]. Other approaches restrict the
type of motion to translation only [17], [25] or do not
work for multiple objects [6]. The most important limitation,
however, shared by all segmentation methods that rely on
relative motion is that they do not have control over whether
an object is in motion.

Interactive segmentation methods overcome the limitations
of the methods above by interacting with objects, for ex-
ample by pushing them. This interaction generates a visual
signal (the motion of connected bodies, i.e., an object) that
directly corresponds to “object-ness.” Segmentation is then
computed based on the pixel-wise intensity changes between
consecutive frames [1], [9], [19], [16]. This approach has the
advantage of being very simple, robust, and computationally
inexpensive. It is, however, limited to objects undergoing
planar motion and ignores the rich information provided by
color.



The perceptual skill presented in this paper combines the
advantages of all of the aforementioned methods. It uses
deliberate interactions to generate motion and uses this visual
signal together with a variety of visual cues to determine
candidates for fixation points. These points are tracked over
time and segmented into clusters, corresponding to rigid
bodies. It then computes an object segmentation around
each cluster using an established method for object seg-
mentation [20]. Our method continuously segments objects
undergoing arbitrary three-dimensional motion, makes no
prior assumptions about the object (other than it containing
trackable features—a white, textureless object on the same
background cannot be visually identified), works for objects
of different sizes and shapes, under varying lighting condi-
tions, and is computationally efficient. It is thus well-suited
for manipulation in unstructured environments.

III. INTERACTIVE SEGMENTATION OF ARTICULATED
OBJECTS

The goal of this work is to support manipulation in
unstructured environments with a perceptual capability to
continuously detect, segment, and track objects. To achieve
this, our method exploits the insight that manipulation itself
can facilitate the acquisition of perceptual information. By
physically causing objects to move, the robot can generate a
perceptual signal that enables object detection, segmentation,
and tracking.

Our algorithm is composed of three components. The first
component collects perceptual information that provides the
input to our perceptual skill. This component initializes and
tracks visual point features throughout the robot’s interac-
tions with the environment. The second component analyzes
the trajectories of these features to formulate hypotheses
about the presence of rigid bodies in the scene. The result is
a clustering of features and their trajectories, where each
cluster corresponds to a presumed rigid body. The third
component of our algorithm uses the features associated with
a single rigid body as fixation points for object segmentation.
As we know the features’ trajectories through time, we can
use repeated segmentation to track objects during manipula-
tion.

A. Collecting Perceptual Evidence for Segmentation

The first component of the algorithm collects perceptual
information. The robot observes its interactions with the
environment by tracking a large number of point features
using the Lucas-Kanade feature tracker. During its inter-
action, the robot records the features’ image coordinates
(u,v) and their color values c for each time t in feature
observations fi(t) = {u,v,c}. Feature tracking is a simple and
computationally efficient operation. It only requires that the
scene contains sufficient texture to support visual tracking.
It makes no assumption about the shape, size, or color of
objects, about their motion, or the motion of the camera.

Feature tracking in unstructured scenes is highly unreli-
able. Features can jump between image regions, are lost,
swapped, or drift along edges in the image. The remainder

of the algorithm will automatically eliminate this noisy
data, rendering the algorithm suitable for manipulation in
unstructured environments.

To cause motion of objects in the scene, the robot must
interact with the environment. In this paper, we will assume
that this initial interaction is given or generated by random,
force-controlled motion. In future work, we will eliminate
this assumption, following prior work in manipulation of
planar objects. In that work, the robot learns to generate
such goal-directed interactions autonomously [15]. Please
also note that our algorithm does not differentiate between
objects that move by themselves and objects moved by the
robot.

B. Obtaining Rigid Body Hypotheses

The proposed segmentation algorithm uses the obtained
feature trajectories to determine hypotheses about groups of
features that could lie on the same rigid body. To formulate
these hypotheses, the algorithm leverages the simple insight
that features associated with a single rigid body share a set of
spatial, temporal, and appearance properties, some of which
will remain constant or evolve consistently as the object or
the camera moves.

Our algorithm stores the feature trajectories obtained in
the previous step in a graph G = (V,E). A vertex v ∈V cor-
responds to a feature fi and contains the feature observations
fi(t). The weight wi, j ∈ [0..1] of an edge ei, j ∈ E connecting
vertices vi and v j will indicate the belief that the associated
features belong to the same rigid body.

To compute this belief, we employ a set of predictors. Each
predictor P( fi, f j) estimates the belief that two features fi
and f j belong to the same rigid body for a specific property,
such as color or change in relative distance. The weight of
the edge ei, j is then given by the product of the believes of
all predictors: ∏k Pk( fi, f j). In our experiments we use k = 6
such predictors, each described below.

The Relative Motion predictor determines the probability
of two features fi and f j being on the same rigid body by
evaluating their relative distance over time. If the relative
distance varies little over time, i.e., if |maxt δ ( fi(t), fi(t))−
mint δ ( fi(t), f j(t))|, where δ (·, ·) is the distance between two
features in pixels, is below a noise threshold of 5 pixels, we
conclude that fi and f j are likely to belong to the same rigid
body (wi, j = 1). This is illustrated in Figure 3. The figure
shows a cabinet door in two configurations, open and closed.
Tracked features are marked by pink circles. As the motion
is approximately parallel to the image plane, the relative
distance between pairs of features changes little over time.
The predictor would therefore increase our belief that the
pink features belong to the same rigid body. Note, however,
that this is only true for features undergoing motions parallel
to the image plane; the existence of relative motion among
features therefore does not imply that they are on different
rigid bodies.

The Short Distance predictor predicts two features to be
on the same rigid body if they are close to each other in
the image. It computes a belief value as a function of the



Fig. 3. Illustration of the Relative Motion predictor (for details see text
above)

feature distance δ ( fi, f j). If the distance is smaller than 10
pixels, it sets wi, j = 1, indicating our belief that the two
features are on the same rigid body. Otherwise, it sets wi, j
to 1

2 , indicating that the evidence is not conclusive. The Long
Distance predictor is similar to the previous one. Here, large
distances indicate that fi and f j belong to different rigid
bodies. If δ ( fi, f j) is larger than 160 pixels, we set wi, j to 0.
If it is smaller than 30 pixels, we set wi, j to 1

2 (no decision).
Otherwise, the belief is a linear function of the distance:
wi, j = 1− ( 1

2 +
δ ( fi, f j)−30
2·(160−30) ). Figure 4 shows two clusters of

features (pink and blue circles) obtained using only these
two predictors.

Fig. 4. Illustration of the Short Distance and Long Distance predictors (for
details see text above)

The Color Segmentation predictor uses the assumption
that rigid bodies have similar visual appearance. It uses color
and texture information to segment an image into color-
consistent regions (see Figure 5). Segmentation is based on
the implementation provided by [7]. Point features that are
in the same region are more likely to belong to the same
body than points that are in neighboring regions. The more
color regions separating between a pair of features fi and
f j, the weaker is the predictor’s belief that they are on the
same rigid body. If a pair of features are separated by more
than n = 5 regions, we set wi, j =

1
2 , indicating neutral belief.

Otherwise, the predictor sets wi, j = 1− n−2
4 .

The Triangulation predictor relies on the insight that
features on the same rigid body generally maintain neighbor-
hood relationships throughout short motions of the object: if
a feature fi is to the left of f j at time t, it is expected to
be to the left of that feature at time t +1. Do determine this

Fig. 5. Illustration of the Color Segmentation predictor (for details see
text above)

neighborhood relationship efficiently, the predictor relies of
the Delaunay triangulation. Figure 6 illustrates this process
for the case that a features moves in a way that is not
consistent with a single rigid body hypothesis. The left image
shows the Delaunay triangulation for a set of features at time
t. The right image corresponds to the adjacency relationship
at time t for feature locations at time t +1. In this example,
only one feature (blue circle) has moved, and therefore
is not consistent with the other features (orange circles).
Features inconsistent with a single rigid body hypothesis
can be detected by searching for edge intersections (red
circles). Edges between vertices that violate the triangulation
are assigned weight of zero, whereas edges that do not
violate it are assigned weight of one. This predictor differs
from the first four predictors as it formulates a hypothesis
encompassing all features, instead of just one pair of features
at a time.

Fig. 6. Illustration of the Triangulation predictor (for details see text above

The Fundamental Matrix predictor formulates hypothe-
ses about plausible real-world 3D motion of a subset of the
features that could have given rise to their observed 2D
trajectories in the image plane. Hypotheses are computed
for sets of eight features selected using RANSAC [8] based
on the Fundamental Matrix algorithm [13]. This algorithm
takes the image plane locations of eight features at times t
and t + 1 and determines a rigid body transform under the
assumption that the features are indeed on a single rigid body.
The predictor now scores the degree to which the hypothesis
explains the trajectories of all other features. Finally, the
predictor uses the J-Linkage algorithm [24] to cluster the
features into groups of features that most closely match a
common hypothesis. We set wi, j to 1 if the motion of features
fi and f j can be explained by the same fundamental matrix
hypothesis; the weight is zero otherwise. Here too, we utilize
global information to formulate hypotheses about the motion



of a group of features. Figure 7 shows two views of the same
scene. Using eight features (yellow circles) that are matched
between the images, we compute the fundamental matrix to
explain the motion of the camera between frames. If the
eight features are on a single rigid body, we can explain the
motion regardless of whether the objects or the camera are
moving, or both of them at the same time.

Fig. 7. Illustration of the Fundamental Matrix predictor (for details see
text above)

Using these six predictors, the algorithm weights the edges
of G; edges with weight zero are removed. Our experimental
results in Section IV will show that each predictor adds
valuable information that improves the resulting segmenta-
tion. Each strongly connected components of the graph now
represents the hypothesis that the corresponding features are
on the same rigid body.

To break the graph into highly connected subgraphs, we
use the weighted min-cut algorithm [4]. We invoke min-
cut recursively [14] until cutting a graph requires removing
more than half of its edges. Our min-cut algorithm has
worst case complexity of O(nm), where n represents the
number of nodes in the graph and m represents the number
of clusters [18]. In practice, m� n, as the robot’s field of
view typically contains only a few objects. We can therefore
conclude that for practical purposes clustering is linear in the
number of tracked features.

It should be noted that the robustness of our algorithm is
to a large extent a consequence of this graph labeling and cut
procedure. Noisy features perform motion that is inconsistent
with the motion of other features. The corresponding vertices
will therefore be disconnected from other vertices. Noisy
features can thus be removed, leading to highly robust
segmentation.

C. Segmenting Articulated Objects

The previous components of the algorithm have provided
us with clusters of features, each hypothesized to be on a
different rigid body. The last component of our algorithm
uses the object segmentation algorithm by [20] to perform
fixation-based object segmentation for each of the clusters.

Ultimately, we would like to compute one segmentation
for each object at every time t. Given a cluster of features,
we use each feature fi(t) in that cluster as a fixation point
for fixation-based segmentation at time t. We then combine
the results of segmentation for each feature in the cluster to
achieve the overall object segmentation at time t.

D. Putting Things Together

By combining the three components described in Sec-
tions III-A–III-C, we obtain a robust perceptual skill. This
skill only makes some general assumptions. One assumption
is that the scene contains sufficient texture to identify visual
features. The second assumption is that the robot is able
to make contact with the environment. Turning this second
assumption into a specific manipulation will be the subject of
future research. Here, we provide the perceptual capabilities
to enable that manipulation.

IV. EXPERIMENTAL VALIDATION

We validate the proposed method for 3D object seg-
mentation in real-world experiments. The experiments were
conducted with our robotic platform for autonomous mobile
manipulation (see Figure 1). Our robot consists of a holo-
nomic mobile base with three degrees of freedom, a seven
degree-of-freedom manipulator arm, and a three-fingered
hand. The robot interacts with various articulated objects
(see Figure 2). These objects—door, box, wooden-train toy,
fridge, laptop, elevator doors, and tricycle—vary in scale,
shape, color, and texture. An off-the-shelf web camera with
a resolution of 640 by 480 pixels provides a video stream
of the scene throughout the interaction. Experiments were
conducted without active control of lighting conditions.

In our experiments, a robot interacts with an articulated
object to acquire and track a segmentation of its rigid parts
over time. The robot tracks the 500 most prominent Lucas-
Kanade features in the scene. During the interaction, which
was performed using pre-recorded motions, about half of
these features are lost. Among the remaining ones, about
half are noisy and are discarded by our algorithm.

A. Identifying Rigid Bodies

The task of the first two components of our algorithm is to
identify rigid bodies in the scene. Figure 8 shows the results
of analyzing the same scene to identify rigid bodies, each
time using a different subset of the six predictors described
in the previous section. The hypothesis behind our work is
that with more information, identifying rigid bodies becomes
easier and more reliable. The experimental results in Figure 8
support this hypothesis.

Figure 9 shows seven experiments, one in each row, with
different real-world objects, illustrating the performance of
our algorithm in identifying rigid bodies in an unstructured
scene. The leftmost column shows each object before the
robot interacts with it. The second column shows an instance
of the interaction itself. The third column shows the final
pose of the object (after the interaction). The rightmost
column shows the results of clustering the tracked features
into rigid bodies. The obtained graph clusters are shown in
white. Each cluster corresponds to a hypothesized rigid body.
We will now describe each experiment.

In the first experiment (top row), the robot interacts with
a box by pushing it and closing the flap. Three clusters are
identified by the algorithm: one is associated with the box,
the second with the flap, and the third with a static object



Fig. 9. Experimental results showing the process of identifying rigid bodies in a scene using interactive segmentation. Left to Right: The first column
shows the object before the interaction; the second column shows the interaction itself; the third column shows the object after the interaction; and the
fourth column shows the results of segmenting the graph of tracked features into clusters of features on the same rigid body.

(picture cube). Here, the long distance predictor helps us
separate the picture cube from the box. The fundamental
matrix predictor identifies the difference in the motion of
the three bodies. And the short distance predictor reinforces
the connectivity between close features.

In the second experiment, the robot interacts with a
door. The fundamental matrix and triangulation predictors
differentiate between the door and the frame. The long
distance predictor further supports this distinction. Color-
based segmentation, in contrast, encourages us to cluster all
features together because most of the scene has a uniform
yellow texture. If our algorithm relied solely on color, it

would fail here. The strong signals provided by the other
predictors enable the robot to correctly separate the door
from the frame.

The third experiment is similar to the second, except that
here the robot interacts with a smaller object—a fridge door.
The texture, lighting conditions, and viewing angle are all
different. The result, however, remains similar, and the robot
differentiates between the door, the frame, and two other
distant static objects.

In the fourth experiment the robot interacts with a laptop
by pushing it and by opening the lid. As a result, three
clusters associated with the three rigid bodies in the scene



Fig. 8. This figure shows the clusters generated using different mixes of the
predictors. Top: the relative distance, short distance and color segmentation
predictors were used. They cannot leverage motion or structure violation
cues, and therefore cluster all features together. The result is a segmentation
of the entire image as one object. Middle: all predictors except for the
fundamental matrix were applied. The results are good, but lack the ability
to recognize that clusters on the fridge’s door move together and therefore
belong to the same rigid body. Bottom: here all predictors were used, and
indeed the result is a segmentation of the image into the moving body (the
fridge door), and some static objects that are spatially far from each other.

are identified: the static power supply, keyboard and screen.
In the fifth and sixth experiment the robot interacts with

a prismatic joint: opening a cabinet door, and translating a
wheeled table. In both cases the algorithm separates static
from moving bodies. It also separates between two static
bodies because of the large distance between them.

The last experiment, in row seven, shows the result of
interacting with a train toy. Here, color segmentation alone
would do very badly because each rigid part is composed
of multiple brightly colored blocks, whereas the base of the
engine and car have identical wooden texture. The algorithm
relies here on the strong motion signal to distinguish between
the static object (game tokens) and the two parts of the train.

These experiments show that we can reliably generate
accurate hypotheses about which features belong to the same
rigid object. Throughout the paper, we show only a selection
of the experimental data used to test the algorithm, but all of
our ten experiments were successful and show similar results.

B. Computing Object Segmentation

We now demonstrate that the clusters of features obtained
by our algorithm serve as good fixation points for fixation-
based object segmentation. In our experiments, we use a
fixation-based segmentation algorithm developed and imple-
mented by Mishra, Aloimonos, and Fah [20]. To segment a
rigid body at time t, we use all features fi(t) associated with
a single rigid body as fixation points. Each fixation point
results in a segmentation candidate. We combine all seg-
mentation candidates by including every pixel that appears

in any one of the candidates, to produce the body’s final
segmentation.

Figure 10, shows the results of fixation-based object
segmentation for four objects (drawers, laptop, train toy,
and a fridge), in two different configurations. Each rigid
body is indicated by a surrounding color strip. The resulting
segmentations match well with the physical extents of each
rigid body, providing information that is vital for manipu-
lating these objects. Because we use a segmentation-based
algorithm from the literature, we only show a selection of
our experimental results. For a more detailed evaluation of
the algorithm, see [20]. In other experiments, we obtained
segmentations of comparable quality.

Fig. 10. Image segmentation results for drawers cabinet, a laptop, a train
toy, and a fridge (see text for details)

C. Discussion

In all experiments, the proposed algorithm detected, seg-
mented, and tracked the segmentation of all rigid bodies
containing a sufficient number of visual features. This ro-
bustness is achieved using a low-quality, low-resolution web



camera, without tuning any parameters. Experiments were
performed under uncontrolled lighting conditions, different
camera positions and orientations, and for different initial
poses of the objects. The demonstrated robustness and effec-
tiveness provides evidence that the presented perception skill
is suitable for manipulation in unstructured environments.

V. CONCLUSIONS

We presented a perceptual skill in support of manipula-
tion in unstructured environments. This skill identifies and
segments articulated rigid objects in unstructured scenes. It
tracks the segmentation as the objects perform arbitrary mo-
tions in three dimensions. The proposed perceptual skill does
not require knowledge of the objects and is computationally
efficient.

We believe that this perceptual skill is a necessary ca-
pability for reliable manipulation of articulated objects in
unstructured environments. To successfully plan and execute
a manipulation task, the robot has to identify the boundary
of an object so as to know where and how to exert forces
onto it. Further, the robot has to track the object’s motion
to determine the effects of the exerted forces. The presented
perceptual skill provides these capabilities in a robust and
general way.

There are two key insights that lead to the robustness and
generality of the described perceptual skill. The first insight
is that segmentation should be focused on individual rigid
bodies, rather than the entire image. The second insight is
that to achieve robustness in perception, multiple sources
of information must be combined. Our perceptual skill
computes segmentation using multiple visual cues. The most
important cue it uses is motion of the object. An important
contribution of this work is the demonstration that purposeful
interactions should be considered as part of the robot’s
perceptual toolbox. We show that deliberate interactions with
the environment reveal a perceptual signal that enables robust
segmentation in unstructured scenes.
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