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Abstract—Iteration is often enough for a simple hand to
accomplish complex tasks, at the cost of an increase in the
expected time to completion. We propose to streamline this
idea by allowing a simple hand to abort early and retry
grasps as soon as it realizes that the task is likely to fail.
This paper presents two key contributions. First, we learn a
probabilistic model of the relationship between the likelihood
of success of a grasp and its grasp signature—the trace of
the state of the hand along the entire grasp motion. Second,
we model the iterative process of early abort and retry as a
Markov chain and optimize the expected time to completion
of the grasping task by effectively thresholding the likelihood
of success. Our experiments show that early abort and retry
significantly increases the efficiency of a simple approach to
grasping with a simple hand.

I. INTRODUCTION

Simple hands are characterized by simple mechanical
designs and simple control strategies, both of which com-
promise the potential generality of the hand. In practice, and
based on observations of humans using simple tools and ef-
fectors, simple hands offer broader manipulation capabilities
than any autonomous system has yet demonstrated.

After arguing the case for simplicity in [1], and with the
aim of demonstrating manipulation capabilities with simple
hands, we approached the problem of singulating objects out
of a bin in [2]. The approach in [2] has three key elements:

o Simple mechanism: The simple hand in Fig. 1. It has
thin cylindrical fingers compliantly coupled to a single
actuator, arranged symmetrically around a low friction
circular palm.

o Simple control: Contrary to the more traditional ap-
proach where robotic hands try to “put the fingers in the
right place”, we close the hand and “let the fingers fall
where they may.” We expect the fingers either to drive
the object to a stable pose or to reject it, effectively
reducing the space of possible outcomes of the grasp.
This simplifies the relationship between the signature of
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Fig. 1.

(a) Bin-picking scenario. A robotic manipulator drives a simple
hand in and out of a bin full of identical objects. (b) P2, a simple hand
prototype with four fingers compliantly coupled to a single actuator. Motor
and fingers have absolute encoders that provide the full state of the hand.

a grasp and its outcome, facilitating the creation of a
data-driven model.

« Iteration: To address the expected failures of the simple
approach, we use the iteration scheme in Fig. 2 until
successfully singulating an object.

The simplicity of the approach often comes at the cost
of increasing the expected time to a successful grasp. We
propose in this paper to reduce that expected time by using
proprioceptive feedback to predict failure early during the
execution of the grasp and possibly abort and restart the
procedure. To predict failure we keep track of the instan-
taneous likelihood of success. Our goal is to show that we
can optimize the threshold on the instantaneous likelihood of
success to improve the performance of the simple approach
in terms of expected time to a successful grasp.

We maintain the same scenario as in our previous work,
Fig. 1, a bin-picking task. Relevant to our approach is the
concept of grasp signature, the trace of the state of the
hand along the entire grasp motion. In earlier work we



Fig. 2.

Iterative framework: The grasp is iterated until the system confidently detects success in the task of singulating an object from the bin. (a) At

the beginning of the grasp the hand is above the bin. (b) The interaction of the hand with the environment is logged during the entire grasp process,
constituting the grasp signature. (c¢) During run time, a data-driven model classifies the grasp as success or failure. In the case of failure, the grasp restarts.
(d) During the training phase, the success/failure learning process is supervised by a vision system that provides ground truth on the number and location

of markers grasped.

learned a discriminative model of the relationship between
the signature and outcome of a grasp. In this paper we instead
learn a probabilistic model to keep track of the instantaneous
probability of success all along the grasp process. This way
we are able to detect grasps that are so likely to fail that
aborting and restarting will reduce the expected time to
success. In Sect. III we introduce in a more detailed manner
the concepts of grasp signature, expected time to a successful
grasp and likelihood of success.

In Sect. IV we model the iterative process of early
abort and retry as a Markov chain and derive an analytical
expression for the expected time to a successful grasp. We
then use the model in Sect. V to optimize the abort thresholds
to minimize the expected time to a successful grasp.

Our experiments show that early abort and retry signifi-
cantly increases the efficiency of the system. The implemen-
tation of the system is detailed in Sect. VI. We conclude
in Sect. VII describing how the overhead of the iterative
framework—expected time to a successful grasp minus the
nominal length of the grasp—evolves with the number of
possible abort points along the grasp process.

II. PREVIOUS WORK

This paper focuses on a bin-picking scenario, a challeng-
ing grasping task combining high clutter with high pose
uncertainty, for decades the focus of numerous research
efforts [3], [4]. One of the main goals is to show that we
can use proprioceptive feedback to improve the capabilities
of a simple hand. In-hand sensor information has previously
been shown to improve grasping performance [5].

We use a data-driven methodology for failure detection
and abort optimization based on the signature of the grasp.
Data-driven approaches have previously been proposed for
failure detection in different contexts, including tool break-
age detection in milling operations [6], [7], machine vibration
analysis [8] or failure detection in assembly operations [9],
[10].

In the process of detecting failure, we estimate the out-
come of the grasp based on kinesthetic sensor data. Bicchi,

Salisbury and Brock [11] explored a similar problem: as-
suming known finger shape and location, they estimate the
contact point from a measured applied wrench, a technique
known as intrinsic contact sensing. This contact information
can be used to infer the pose of a known shape.

Also relevant is the related problem of inferring the object
location from kinesthetic or contact sensor data, studied by
Siegel [12], Jia and Erdmann [13], [14] and Wallack and
Canny [15]. While all these works are based on analytical
models of contact and grasp mechanics, in this paper we use
a statistical data-driven approach to create a model of the
relationship between the signature of the grasp process and
its outcome, thereby bypassing the intermediate estimation of
contact points. This way we incorporate numerous sources of
information very challenging to capture otherwise, including
the effect of the grasping motion and that of surrounding
clutter. Laaksonen, Kyrki and Kragic [16] compared the ef-
fectiveness of different statistical data-driven methods for on-
line estimation of grasp stability, based on both kinesthetic
and contact sensor data.

The framework proposed in this paper for optimizing the
series of abort conditions has some similarities with the
cascades of classifiers proposed in computer vision to speed
up the detection rate of object classifiers without compromis-
ing performance [17], [18]. A series of incrementally more
computationally expensive classifiers trade off the cost and
risk of taking a decision or letting the following classifier in
the cascade do it.

ITI. GRASP SIGNATURE AND EARLY FAILURE
DETECTION

A. Grasp Signature

By grasp signature we mean the trace of the state of
the hand along the entire grasp motion as perceived by the
hand’s own sensors. The signature can be composed of,
but not limited to, time-stamped data from joint encoders,
tactile sensors, and torque sensors. This work builds on



the assumption that the grasp signature encodes enough
information to characterize the outcome of a grasp.

The compliant simple hand used in this work, P2, has
absolute motor and fingers encoders that allow us to recover
the full kinematic state of the hand. Figure 3 shows a side by
side comparison of the finger encoder signatures of examples
of successful and failed grasps.

In previous work [2] we demonstrated with P2 that it
is possible to accurately detect correct singulation in a bin
picking task based only on grasp signature information.

In that experiment, a robotic manipulator blindly drives
the hand in and out of the bin full of objects following a
preprogrammed path. After each retrieval, an offline learned
model decides whether the system is confident enough about
correct singulation of an object or if the robot should restart
the procedure.

B. Expected Time to a Successful Grasp

In the iterative framework in Fig. 2, we define the expected
time to a successful grasp T, as the average number of grasp
attempts needed to obtain a successful grasp of the object,
multiplied by the time span of the grasp T

In [2] we show how the system precision (false negative
rate) can be improved by tuning the weights of positive
and negative training examples, at the cost of increasing
the false positive rate. This has the unsought consequence
of increasing the probability of iteration f of the system,
leading to an increase in the expected time to a successful
grasp.

In this paper we propose to abort grasps that the system
predicts likely to fail as a technique to reduce the expected
time to a successful grasp while still maintaining high values
for the precision of the system.

The expected time to a successful grasp of the system in
Fig. 2 is a function of the probability of iteration, 7 = %
Analogously, we show in Sect. IV that the expected time with
early abort is a function of the probability of early failure.

C. Success Probability

We are interested in confidently predicting failure early
during the execution of the grasp. This will enable aborting
grasps early and consequently reducing the cost of iteration.

To aid in the decision of whether or not to abort a
grasp at instant ¢, we learn a probabilistic model of the
relationship between the first ¢ seconds of the signature and
the final outcome of the grasp. This model provides us with
an estimation of the instantaneous probability of success at
instant ¢. This contrasts with our previous approach in [2]
where we learn a discriminative model to signal success at
the end of the grasp.

The specifics of how to learn the model are detailed in
Sec. VI-C. For the following sections we will assume that
for a given a set of K grasp signatures {g;(t)}, , and
correspondent labels {/;}, , € {+,—} we are able to learn
a probabilistic model of their relationship:

M g([0,1]) = p(t)
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Fig. 3. Side by side comparison of the grasp signature (4 finger encoders)
of a typical (a) successful and (b) failed grasp. The fingers begin the grasp
perpendicular to the palm (0°) and reach the final position shown in the
figures.

where g(t) is the signature of a grasp execution and p(t) is
the success probability signal, the instantaneous probability
of success of the grasp as predicted by the model M. As an
example, Fig. 4 shows the success probability signal for the
successful and failed grasp signatures in Fig. 3.

100% 100%

50% \/._/-—/ 500 \/\'—\

0% 0%
15.0s

() (b)

Fig. 4. Evolution of the probability of success for the successful (a) and
failed (b) examples illustrated in Fig. 3. At the beginning of the grasp, the
system is uncertain about the possible outcome, but gradually becomes more
confident about the outcome.

15.0s

With the estimation of the instantaneous probability of
success p(t) in hand, we introduce the cut-off probability
signal 7(t) that specifies the threshold for when to abort a
grasp execution.

It is impractical to keep track of the value of
the probability of success in a continuous manner. In
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Markov Chain that models a system with n abort points at instants ¢; = ¢ - At. O is the initial state, Sp .. .Sy the abort points and S the end

state. The system reaches the end state if and only if it is not discarded by any of the classifiers at the abort points. The cost of transition is equal to
At while we assume the abort cost independent of the state and equal to R. At each state .S; the grasp continues with probability P; and aborts with

probability 1 — P;.

practice we discretize the grasp into n time slices
[to,t1], [t1,t2] ... [tn—1,tn] and train n independent prob-
abilistic classifiers at instants {t;}, .. As the grasp pro-
gresses, they output a series of estimated success proba-
bilities p;...p, that get compared against n probability
thresholds 7y ... m,:

If p, < m — ABORT at t; (1)

A unique contribution of this paper is to show how to
model the execution of such a system with n possible
aborting points, Sect. IV, and how to optimize the cut-off
probabilities to minimize the expected time to a successful
grasp, Sect. V.

IV. MODELING ABORT AND RETRY

In this section we model the steady-state behavior of the
system proposed in Sect. III-C with n possible abort points.
We will call O the initial state of the system before the
beginning of the grasp motion, S; the abort points along the
duration of the grasp at instants ¢;, ¢ = 1...n, and S the
final success state.

The system can be represented by the set of states and
transitions in the chain in Fig. 5. Notice that the system sat-
isfies the Markov property, i.e., the following state depends
only on the current state and not on the past. All states except
the initial one trivially satisfy the property since, beginning
from S, there is only one possible history of transitions to
get to them. If we assume statistical independence between
successive repetitions of the experiment, the initial state also
satisfies the Markov property.

The behavior of a time-homogeneous Markov chain is
represented by the transition probabilities between states. In
our case we introduce the probabilities P;: probability of
transition from state S; to state .S; ;. At each state .S; the
abort probability is then 1 — P;. P, is the fraction of grasp
attempts that reach the end of the execution and are actually
classified as good grasps.

The Markov chain model proves useful for the purpose
of analyzing the steady-state behavior of the system, and
in particular, the expected time to a successful grasp. We
assume all abort points to be equispaced in time, with a
constant spacing of At. We also suppose that the cost in
time of aborting, R, is constant and independent of the state

of the system. The following proposition gives a closed form
expression for the expected time to success as a function of
the transition probabilities.

Proposition 1 (Expected time to a successful grasp): In
the iterative system of Fig. 5 with n equispaced abort points
and transition probabilities P; ... P,, the expected time to
success T can be expressed as:

L+ (- P) +R [1 —II, P

= At
! HZL:1 P H?:1 P;

o

Proof: We introduce the intermediate variables 7y,
Ty ...Tn to represent the expected time to success from each
one of the states of the system O, S ... S, correspondingly.
Notice that 7y is by definition equal to the expected time to
a successful grasp 7. We will prove the general term by
induction on the number of time slices n.
For the case n = 1, the Markov chain reduces to the one
in Fig. 6:

R
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Fig. 6. Markov chain of the system for the case of n = 1. In this case,
the only possible abort point ¢1 is at the end of the grasp. It models the
original framework in Fig. 2.

In steady-state the expected times 7y and 7y are related by
the equations:

T0 = At +7’1 (3)
T1 = (1—P1)(’7'0+R)
Solving the system (3) for 79, we get:
1 1-P
=At-—+R- 4
70 P + P, 4)

which satisfies the general term.

Now we assume that the general term is correct for the
case of n — 1 abort points and we prove for the case of n.
The Markov chain with n abort points in Fig. 5 is equivalent



to the simplified chain in Fig. 7 where the first n — 1 states
are combined into a macro initial state O* with transition
cost 7*.

Fig. 7. Equivalent Markov chain for the case of n abort points. The first
n — 1 abort states can be included in a macrostate O*. The new transition
cost 7* from O* to Sy, is the expected time to a successful grasp of the
subsystem with n — 1 abort states plus At, the original transition cost from
Sn_1to Sp.

The new initial state behaves internally as a system with
n — 1 abort points. By induction, the transition cost from O*
to S, is:

T = At +At
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The simplified equivalent system in Fig. 7 has the same
structure as in the case of n = 1, therefore, using (4) the
expected time to a successful grasp can be computed as:
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which concludes the proof. [ ]

In the next section we see how the expression for 7 in
Proposition 1 simplifies the estimation of the expected time
to a successful grasp of the system.

V. OPTIMIZING ABORT AND RETRY

As detailed in Sect. III-C, the learning system comprises n
predictive models that produce success probability estimates
p; at the abort points ¢;. Each state .S; decides whether to
abort by comparing probability p; with threshold ;. In this
section we show how to optimize the thresholds 7 ..., to
minimize the expected time to a successful grasp.

To optimize the expected time 7, we need to study
how variations in the thresholds m; affect 7. An online
experimental approach would be impossibly time consuming,
requiring numerous experiments to estimate the expected
time to success for every trial value of the thresholds.

Instead of the experimental approach, we combine the
analytical expression of Proposition 1 with offline experi-
ments. Given a candidate set of thresholds m;, we can use
offline experimental data to estimate transition probabilities
P;, and then apply equation (2) to estimate 7. The transition
probabilities can be estimated experimentally by running K
grasp executions and computing:

Grasps reach S;41
Grasps reach S;

Pi=Plpi>m]= &)
It is key to notice that, when using the transition probabilities
as an intermediate step to evaluate T, it is not necessary to
run the experiment again even if the values of the cut-off
probabilities change. Equation (2) allows a more efficient
strategy. Assuming that the learned predictive models do
not change, we can reapply the abort condition in (1) for
the same K grasp executions, but now with the new cut-
off probabilities 7 ... m,. We then reestimate the transition
probabilities with (5). As a consequence, once we have
captured the complete signatures of K grasp executions,
the optimization process can be done completely offline and
without any more required grasp execution.

In order to optimize (2) analytically, we would need to
control the transition probabilities. However, we only have
direct control over the cut-off probabilities. The relationship
between 7; and P; is complex, because P; depends on the
value of all previous thresholds 7; ...7; and on the actual
data. An analytical expression of 7 is terms of 7 ... 7, is
not feasible, so we use a direct search method to optimize
it, given that the evaluation of the cost function is fast.

In Sect. VII we detail the implementation of the optimiza-
tion and the results obtained, in particular how the expected
time decreases with the number of abort points n.

VI. IMPLEMENTATION
A. System Architecture

The system implementation has a modular design, based
on the ROS (Robot Operating System) architecture [19].
Each subsystem is contained within a separate node, with
messages being passed between the nodes containing both
sensory data and commands.

A finite state machine governs the overall system. The
state machine implements the Markov chain in Fig. 5, cycling
through each one of the steps of the grasp and allowing
for easy modification of the grasp behavior. Different nodes
within the system include:

o Main Controller: Primary node which implements the

state machine.

« Robot Controller: Controls the position of the indus-
trial manipulator.

o Grasp Controller: Controls the motor in the hand, and
broadcasts motor and finger encoder positions.

« Vision Interface: Aggregated vision routines to provide
ground truth for the learned models both on the number
of markers grasped and their position within the hand.

o Learning Interface: Receives motor and encoder read-
ings, and broadcasts success probabilities.



B. Vision System

The data-driven approach used to model the probability of
success in Sect. VI-C requires first running a large number
of grasp executions and logging their signature and outcome.
The vision system is meant to provide feedback both in terms
of the number of objects grasped and the location of the
objects within the palm of the gripper, making the overall
system self-supervised.

We have implemented a vision system tailored to the
specific application and object (highlighter marker) using
Willow Garage’s OpenCV vision processing library [20]. It
is composed of the following steps:

1) Background subtraction: Prior to the testing process,
we capture an image of the hand with no markers. We
then black out all areas of the image reasonably similar
to the calibration image. This removes extraneous
noise (color of the robot arm, objects in background,
etc).

2) Find color regions: Since the highlighter markers are
brightly colored, we threshold the image to determine
regions of color. We then clean those same regions by
removing small clusters of color.

3) Find edges and lines: We recognize markers by their
straight edges using the Canny edge detector near
color regions. We then use the Hough line detector
to determine prominent lines in the image and assume
that the long edges of each marker are among those.

4) Most likely position for a marker: Each detected line
is scored proportional to the amount of color to each
one of its sides. Iteratively we detect the most likely
edge of a marker and subtract the color labeled region
until insufficient color is left in the image for another
marker to exist.

Fig. 8 shows an example of the output of each one of the
four substeps of the vision system.

We evaluated the vision system with 266 images captured
in successive trials. In the task of classifying the grasp
outcome between the cases of 0, 1 or more markers, the
algorithm was able to correctly classify all images except
one where a marker was caught in the unlikely position of
pointing directly at the camera. The accuracy of the vision
algorithm is high enough to treat its output as ground truth
for the posterior learning system.

Within the class of multiple markers, the vision system
correctly distinguishes between 2, 3, 4 or more markers in
126 out of 133 images in the dataset. Though this is not
immediately useful for the present application, it shows that
the system is reliable enough for future work.

C. Learning System

As detailed in Sect. III-C, the objective of the learning
system is to model the relationship between the signature
of a grasp and the evolution of the success probability p(t).
The system decides to abort and retry a grasp by setting a
threshold on that probability.

For that, we learn a probabilistic model of that rela-
tionship at predetermined points in time along the grasp

() (e)

Fig. 8. The vision system outputs the position and orientation of the
marker within the palm of the hand. (a) Example of input image to the
vision system. (b) Filtered image after background subtraction. (c) Image
after color region filtering. (d) Edge and line detectors. (e) Most likely
position of the marker.

signature. Among the different available techniques for prob-
abilistic classification we choose Relevance Vector Machines
(RVM) [21], which employ a similar formulation as Support
Vector Machines, but use a Bayesian inference to provide
probabilistic classification. We use the implementation pro-
vided in the DIlib Machine Learning library [22].

Prior to training the RVMs, we use Principal Component
Analysis (PCA) [23] to reduce the dimensionality of the grasp
signature. At each abort point ¢;, we compress the section
of the signature [0, t;]. PCA finds a linear transformation of
the signature into a smaller number of linearly uncorrelated
features while retaining most of the original variability across
the set of signatures.

After compression of the signatures with PCA, we use
half of the training data to learn the RVMs. The other half
will be used in Sect. VII to optimize the cut-off probabilities.
Figure 4 shows an example of the evolution of the estimation
of the success probability provided by the trained RVMs.

VII. RESULTS

In order to optimize the cut-off probabilities 7y ... T, we
first capture the signatures of K = 200 grasp executions.
Out of those we draw randomly % that we use to train the
the probabilistic classifiers as detailed in Sect. VI-C. We use
then the other % to optimize the probability thresholds.



TABLE I
NORMALIZED EXPECTED TIME TO A SUCCESSFUL GRASP.

n 7  Improvement
1 217 -
2 212 4.3%
4 198 16.5%
8§ 191 22.0%
16 1.58 50.4%

For any given value of the cut-off probabilities, we make
use of (2) to efficiently evaluate the expected time to a
successful grasp. We use the ga optimizer provided by
Matlab, choosing the expected time as the cost function to
optimize and the cut-off probabilities as the set of parameters.

We normalize all obtained expected times by 7', the time
span of the grasp, so that 7 = 1 is the asymptotically
optimal solution. In that case 7 = % is the expected time
in the original framework without early abort, where f is
the success ratio in the original system. The improvement
when using early abort is measured as the percentage of
decrease of the expected time from the baseline % towards
the optimal.

Table I details the variation of the normalized expected
time to a successful grasp with the number of abort points
n after optimization. The case n = 1 is the baseline to
compare with (system without early abort). Around n = 16
the optimization problem gets too big to be addressed by the
off-the-shelf optimizer ga in Matlab. It is sufficient, though,
to demonstrate that early abort reduces the expected time to
a successful grasp, in the studied case with an improvement
of up to 50%.

VIII. DISCUSSION AND FUTURE WORK

In this paper we introduce the concept of early abort and
retry in the context of grasping in a bin picking task. We
allow a hand to abort and retry the grasp as soon as it
is confident that it will fail. In doing so, we improve the
efficiency of the system with respect to earlier work and
allow a simple hand to be competent in solving a complex
task.

The main contribution of this paper is to show that we can
model a iterative system with fixed abort points as a Markov
chain and use it to optimize the expected time to successful
completion of the desired task.

Although we have focused on grasping in a bin-picking
scenario, the proposed methodology generalizes to any pro-
cess generating a signature that correlates with the potential
success or failure of the execution. Automated assembly is
an example of application that would benefit from early abort
to improve their performance.

Our long-term goal is to demonstrate broad manipula-
tion capabilities with simple hands. In earlier work, we
approached the bin-picking problem with a blind policy
driving the hand. Early abort is a step forward by introducing
a binary policy that at each instant allows the hand either to
abort or to continue with the execution. In our process to

gradually complexify the grasp policy, we intend in future
work to learn an optimal singulating policy from a small
parametrized set.

REFERENCES

[1] M. T. Mason, S. S. Srinivasa, A. S. Vazquez, and A. Rodriguez,
“Generality and Simple Hands,” Robotics Institute, Carnegie Mellon
University, Technical Report CMU-RI-TR-10-40, 2010.

[2] A. Rodriguez, M. T. Mason, and S. S. Srinivasa, “Manipulation
Capabilities with Simple Hands,” in International Symposium on
Experimental Robotics (ISER), 2010.

[3] R. Tella, J. Birk, and R. Kelley, “General Purpose Hands for Bin-
Picking Robots,” IEEE Transactions on Systems, Man and Cybernet-
ics, vol. 12, no. 6, pp. 828-837, 1982.

[4] K. Boehnke, “Object Localization in Range Data for Robotic Bin-
Picking,” in IEEE International Conference on Automation Science
and Engineering (CASE), 2007, pp. 572-577.

[51 A. M. Dollar, L. P. Jentoft, J. H. Gao, and R. D. Howe, “Contact
sensing and grasping performance of compliant hands,” Autonomous
Robots, vol. 28, no. 1, pp. 65-75, Aug. 2010.

[6] S. Cho, S. Asfour, A. Onar, and N. Kaundinya, “Tool Breakage
Detection Using Support Vector Machine Learning in a Milling
Process,” International Journal of Machine Tools and Manufacture,
vol. 45, no. 3, pp. 241-249, 2005.

[71 Y.-W. Hsueh and C.-Y. Yang, “Prediction of tool breakage in face
milling using support vector machine,” The International Journal of
Advanced Manufacturing Technology, vol. 37, no. 9-10, pp. 872-880,
2007.

[8] D. M. Tax, A. Ypma, and R. P. Duin, “Support Vector Data Description
Applied to Machine Vibration Analysis,” in ASCI’99, vol. 54, no. 1,
Heijen, Netherlands, Jan. 1999.

[9]1 K. Althoefer, B. Lara, Y. H. Zweiri, and L. D. Seneviratne, “Auto-
mated Failure Classification for Assembly with Self-Tapping Threaded
Fastenings Using Artificial Neural Networks,” Journal of Mechanical
Engineering Science, vol. 222, no. 6, pp. 1081-1095, 2008.

[10] A. Rodriguez, D. Bourne, M. T. Mason, G. F. Rossano, and J. Wang,
“Failure Detection in Assembly : Force Signature Analysis,” in IEEE
Conference on Automation Science and Engineering (CASE), 2010.

[11] A. Bicchi, J. K. Salisbury, and D. L. Brock, “Contact Sensing from
Force Measurements,” The International Journal of Robotics Research,
vol. 12, no. 3, p. 249, 1993.

[12] D. Siegel, “Finding the Pose of an Object in a Hand,” in /[EEE
International Conference on Robotics and Automation, 1991, pp. 406—
411.

[13] Y. Jia and M. A. Erdmann, “Geometric Sensing of Known Planar
Shapes,” The International Journal of Robotics Research, vol. 15,
no. 3, pp. 365-392, 1996.

[14] ——, “Pose and Motion from Contact,” International Journal of
Robotics Research, vol. 18, no. 5, pp. 466490, 1999.

[15] A.S. Wallack and J. F. Canny, “Generalized Polyhedral Object Recog-
nition and Localization Using Crossbeam Sensing,” The International
Journal of Robotics Research, vol. 16, no. 4, pp. 473-496, 1997.

[16] J. Laaksonen, V. Kyrki, and D. Kragic, “Evaluation of Feature Repre-
sentation and Machine Learning Methods in Grasp Stability Learning,”
in [EEE International Conference on Humanoid Robots, 2010, pp.
112-117.

[17] P. Viola and M. J. Jones, “Robust Real-Time Face Detection,” Interna-
tional Journal of Computer Vision, vol. 57, no. 2, pp. 137-154, May
2004.

[18] M. Dundar and J. Bi, “Joint Optimization of Cascaded Classifiers for
Computer Aided Detection,” in IEEE Conference on Computer Vision
and Pattern Recognition. 1EEE, 2007, pp. 1-8.

[19] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an Open-Source Robot
Operating System,” in International Conference on Robotics and
Automation. 1EEE, 2009.

[20] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[21] M. Tipping, “Sparse Bayesian learning and the relevance vector
machine,” The Journal of Machine Learning Research, vol. 1, no. 3,
pp. 211-244, Aug. 2001.

[22] D. King, “Dlib-ml: A Machine Learning Toolkit,” The Journal of
Machine Learning Research, vol. 10, pp. 1755-1758, 2009.

[23] L. Smith, “A tutorial on principal components analysis,” USA, 2002.



