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I. INTRODUCTION 

Extensive effort has been devoted on tracking finger joint 

kinematics to quantify the high dimensional space of the 

human hand during grasping and manipulation [1]–[3]. It has 

been shown that finger movements can be represented in a 

low dimensional space. However, the kinematics of the hand 

is only one component of grasping tasks. The other important 

component of grasping is the object that is being interacted 

with. Surprisingly, the systematic identification of object 

graspable features has been largely overlooked in the 

investigation of human grasping. The concept of grasping 

affordance has been studied for many years, which is defined 

as the quality of an object that allows a person to grasp and 

perform an action [4]. However, this concept has mostly been 

studied through simple observations [5] and task scenarios 

[6], but not quantitative analysis using kinematic data of 

hand-object interactions. This has prevented further 

understanding of how object properties are represented and 

how grasping is planned in the central nervous system. These 

gaps stem from lack of efficient measurement of (a) where the 

object is grasped and (b) what parts of the hand make contact 

with the object.  

The present work proposes a framework that could bridge 

these gaps and advance our understanding of human grasp 

planning and control. Specifically, the key objective of our 

study is to track the contours of the object and hand 

kinematics at the same time. This is achieved by modeling the 

objects as real time point clouds and implementation of 

collision detection algorithms. Most importantly, this 

framework would allow us to establish a database of human 

grasping behaviors by considering not only the joint space of 

the hand, but also where the object is being grasped.  

II. METHODS & RESULTS 

A. Proof of concept: using marker based tracking approach 

To demonstrate the concept of tracking human-object 

interactions, we first tested an approach that is based on 

optical markers [7]. We used a whole-hand tracking scheme 

based on Extended Kalman Filter that takes advantage of 

recursive estimation to reduce the effect of noise and marker 

occlusions. It consists of 24 markers and is capable of 
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estimating 29 degrees of freedom (DoF) of the entire forearm, 

wrist, and hand sampled at a frequency of 200 Hz. The mean 

accuracy, measured in tip-to-tip tests, is 3 mm (see [8] for 

details). We then model the target objects as point clouds 

from CAD models and three markers were attached to the real 

object at known locations, thus allowing real time estimation 

of the 6 DoF pose of the object that is synchronized with the 

hand tracking. 

The estimation of the points of contact was essentially a 

collision detection problem between the contours of the hand 

and the contour of the object. Since we did not have a point 

cloud or mesh representation of the hand, we simply 

modelled the hand as a collection of spheres that are located at 

the joint centers and fingertips. The contacts were then 

estimated by computing the distance between the hand 

spheres and the object point clouds. The goal of this approach 

was to improve the accuracy of contact estimation when 

precision grasps using fingertips only were performed. By 

comparing our estimated contacts with the contact locations 

(center of pressure) obtained from force/torque sensors, we 

showed that the position error was ≤ 5 mm.  

Furthermore, this framework was designed to estimate the 

object parts that are being grasped. We defined the hand 

enclosing space as the convex hull that bounds all hand 

spheres that are in contact with the object. The geometry that 

is within the hand enclosing space geometry (as a subset of 

the point cloud) was defined as a graspable feature, or 

affordance.  

This setup was tested by asking three subjects to grasp and 

lift three objects (bottle, mug, milk jug) five times with 

different self-chosen grasp locations. Interestingly, we found 

that the five graspable features generated by different subjects 

were highly consistent. For instance, the bottle was often 

grasped from top or from the side using a precision or power 

grasp, respectively; the cup was often grasped at the handle, 

over the top, on the side, or on the rim; the jug was often 

grasped at the handle, cap, or sides. These results further 

demonstrate that geometric cues, together with familiarity 

with the object’s intended use and properties, can 

significantly constrain the way humans grasp objects. 

By tracking both hand and object, we can estimate not only 

which part of the object is being grasped, but also how we 

reach to the object under different task conditions. A recent 

study [9] using this tracking framework examined how 

human compensate for orientation uncertainty of a target 

object (a cylinder) without online visual guidance. It was 

found that subjects did not try to minimize post contact hand 

posture adjustments, but rather maximized the probability of 
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initial contact within the grasp aperture. Therefore, our results 

suggest that the reaching movement was adjusted to 

compensate sensorimotor noise for more efficient sensing of 

actual object orientation.  

B. Work in progress: using Microsoft Kinect to improve 

efficiency 

Although providing satisfactory results, the major issue 

with marker=based approach is that it requires sophisticated 

setup which is extremely time consuming if a large set of 

objects were tested. Additionally, as we are primarily 

interested in the general properties of the parts being grasped 

and the direction of hand movement before grasping, it is not 

necessary to guarantee high precision. Therefore, we tested 

the feasibility of using Microsoft Kinect as a low-cost and fast 

solution to implement our tracking framework. 

There have been many Kinect-based hand tracking 

algorithms, but most of them focus on gesture recognition, 

which does not work well in hand-object interactions since 

occlusion often occurs. Recently, an advanced method has 

been developed using particle swarm optimization [10]. The 

occlusions were solved by modeling physical constrains 

between hand and the objects [11]. Moreover, hand-object 

interaction can be tracked by including the object model with 

hypothesis-and-test approach [12], which is used with 

Bayesian inference to predict human actions on a given 

object. For simplicity, we implemented a skin color based 

tracking algorithm for hand tracking (only the point cloud is 

tracked, but not the hand kinematics), a particle filter based 

object tracking algorithm, and an octree-based collision 

detection algorithm [13]. These implementations allowed us 

to measure how human subjects interact with a large set of 

common objects in their natural way efficiently without the 

interference from the markers or gloves. For further analysis 

of the graspable features from variety of objects, ongoing 

experiments are conducted to generate common graspable 

features for common object set.    

III. FUTURE DIRECTIONS 

In the field of robotics, there have been attempts to quantify 

the mapping between cues derived from perception of object 

features and the interaction between robotic hands and 

objects. The robots can use data generated from human as a 

training set to learn how and where to grasp objects. This can 

be attained through two main methods: one is to track 

position and orientation of the human hand as a 

demonstration for the robots [14]–[16], but without 

considering the geometry of the object; the other is to label 

graspable features heuristically, such as grasping points [17] 

and graspable parts [18], but the hand posture is generated 

computationally. Additionally, the knowledge of human 

hand-object interaction would help generate more robust and 

human-like grasps for robots [19]. Therefore, a better 

understanding of where human make contact with the object 

in common scenarios could potentially advance grasp 

planning for robots. Furthermore, we propose that our 

tracking framework would provide a database of human 

grasping could be used as benchmark and/or training data for 

robotic grasping, in similar fashion as computationally 

generated grasp database [20].   
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