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I. INTRODUCTION

Manipulation tasks can usually be decomposed into multi-
ple discrete phases [3], [7]. For example, picking up an object
generally involves three phases: reaching, loading and lifting.
In the reaching phase, the hand is moving in free space to the
object. In the loading phase, the hand has made contact with
the object and it is applying forces to the object. In the lifting
phase, the hand has lifted the object from the table and can
freely move it around. The transitions between phases often
occur when there is a change in the contacts, e.g., when the
fingers make contact with the object, or the object breaks
contact with the table.

A defining characteristic of a phase is the effects of
actions. For example, flexing the fingers will cause the
fingers to move when reaching and apply more force to the
object in the loading phase. Therefore, in order to apply
the desired manipulation to an object, the agent must first
transition to a suitable phase. As a result, the conditions
for transitioning between phases represent subgoals of the
manipulation task.

In this paper, we present our ongoing work on learning the
phases of manipulation tasks from human demonstrations.
In our previous work [4], we focused on learning phases
from purely exploratory actions, by observing the effects
of actions. However, humans also select which action to
perform based on the current phase [3]. Therefore, by
observing human demonstrations of the manipulation task,
additional information regarding phase transitions can be ob-
tained. We present a probabilistic model for representing the
demonstrations, wherein the phases are represented as hidden
variables. The experimental setup for collecting grasping
demonstrations is described in Section II. The probabilistic
model is explained in Section III.

II. GRASPING DEMONSTRATIONS

Experiments were performed using the Darias robot shown
in Fig. 1. The robot consists of two Kuka light weight robot
arms, and two DLR five-fingered robot hands. Both the arms
and the hands possess active compliance, which makes them
suitable for kinesthetic teaching. The fingers are controlled
using joint impedance control. Although the hands currently
do not possess tactile sensors, each joint is equipped with
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Fig. 1. The bimanual Darias robot used in the grasping experiments.

a torque sensor, which provides information on the forces
involved in the manipulation task. This information is how-
ever not available when performing kinesthetic teaching, as
the forces applied by the human are cancelled out by the
forces applied by the object interaction.

Rather than performing the kinesthetic teaching directly,
we employed a teleoperation approach, as shown in Fig. 2.
The human demonstrates the task using the left arm and
hand, which is then immediately used to control the right
arm and hand. The haptic information from the right hand is
also sent back to the left in order to give the human additional
force feedback. Controlling fingers individually is not a
trivial task for a human demonstrator. The demonstrations
were therefore performed in two stages. In the first stage, the
robot was demonstrated a set of grasps, which were used to
learn a set of eigengrasps [2]. For the second stage, the joint
configuration of the left hand was projected into the space of
the eigengrasps before being used to define the desired hand
configuration of the right hand. This dimensionality reduc-
tion greatly simplifies the task for the human demonstrator,
leading to faster and smoother demonstrations in the second
stage of demonstration. For each demonstration, the joint
trajectories and torques of the fingers were recorded. The
3D poses of the hand and objects were also tracked. The
objects were tracked at 90Hz using an Optitrack system.

III. PROBABILISTIC MODEL OF MANIPULATION PHASES

In order to learn the phases and phase transitions of a
grasping task, we use a modified auto-regressive hidden
Markov model. The graphical model is shown in Figure 3.
At time step t, the phase is denoted by rt and modeled as



a hidden variable, as it cannot be directly observed. The
current observed state is denoted by st . Given the current
phase rt and state st , the distribution over actions at is given
by the policy distribution p(at |st ,rt). The policy distribution
is modeled as a separate linear feedback controllers of the
form at = Kr st + er , where er is Gaussian noise.

The state then transitions to a new state st+1 according
to the state-transition distribution p(st+1|st ,at ,rt). The state-
transition distribution is represented by a separate linear
Gaussian model st+1 = Ar st +Br at + er for each phase. It
should be noted that both the policy and the state-transition
distributions depend on the current phase. Hence, the phases
can be inferred from the observed states and actions.

The phase-transition distribution p(rt+1|st+1,rt) defines
the change in phase over time. One of the key differences to
standard hidden Markov models for segmenting demonstra-
tions [1], [5] is the dependence of the phase-transition dis-
tribution on the observed state. This additional dependence
is important for learning when transitions between phases
are more likely to occur. For example, the state dependence
allows the model to learn that a transition from the reaching
phase to the loading phase is more likely to occur when
the hand and object are in close vicinity to each other.
The learned phase-transition distribution thus represents the
subgoals of the phase. The phase-transition distributions are
modeled using logistic regression.

Fig. 2. The teleoperation system used
for demonstrating grasps to the robot.

Given a set of human
demonstrations, the robot
must learn the parameters
of the model. However,
these distributions depend
on the unobserved phases
r1:N . We therefore use an
Expectation Maximization
(EM) approach to learn
the parameters. The EM
algorithm is an iterative
procedure for learning
maximum-likelihood
parameters for scenarios
with hidden variables. The algorithm consists of two steps,
as detailed below.

In the E-step, we infer the joint probabilities
p(rt�1,rt |s1:N+1,a1:N) and p(rt |s1:N+1,a1:N) by
marginalizing out the phase variables for all other timesteps.
The inference is based on the current estimates of the
distribution parameters. Given the structure of the graphical
model, the marginalization process can be performed
efficiently using a message passing algorithm [6].

In the M-step, we use the probabilities of the the phases
to determine the maximum likelihood estimates of the dis-
tribution parameters. The parameters of the state-transition
distributions and the policy distributions can be learned
using weighted linear regression, where the weights of each
sample are given by the corresponding phase probabilities
p(rt |s1:N+1,a1:N). The state-dependent transition probabil-
ities between phases are modeled using weighted logistic
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Fig. 3. The graphical model used to learn the phases. The filled circles
indicate observed variables, and the white circles represent unobserved
variables.

regression, where sample weights are given by the respective
joint probabilitiesp(rt�1,rt |s1:N+1,a1:N). The EM algorithm
continues to iterate between these two steps until the model
has converged.

IV. CONCLUSION

The proposed probabilistic model allows the robot to
learn three key components of the manipulation task from
human demonstrations. The learned state-transition distribu-
tions p(st+1|st ,at ,rt) model the effects of actions within each
phase, and can therefore also be used to recognize the current
phase. The phase-transition distributions p(rt+1|st+1,rt) de-
fine the states wherein transitions between the phases are
more likely to occur. These states represent subgoals of
the demonstrated manipulation task. For other manipulation
tasks, these states may be regarded as task constraints. For
example, if an object should not be moved, the robot can try
to avoid phases that can affect the object. The final learned
component is the policy p(at |st ,rt). The policy of each phase
represents a guarded movement when combined with the
phase-transition distribution.
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