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Some long term questions about 
physical behavior 

!

How does the neuromechanical system (or how 
should a versatile machine) meet the necessary 
and sufficient conditions for dexterous function? 

!

and/or 
!

What specific contributions from passive  (e.g., the 
body/hardware) and active (e.g., the brain) 
components enable dexterous function?



My scientific approach to these problems

Neurophysiology

Sensorimotor behavior

Musculoskeletal modeling

Theories of neural control

Nylon cords
driving tendons

Cadaveric
hand

Physical modeling

Clinical and rehabilitation tools

Machine learning
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Purpose of this talk

To be informative, but also provocative, 
about the interaction between mechanics 
and neural control for dexterous function.!

!

Something we call !
Neuromechanics



I approach these question as 
!

What problem is the brain really solving every 
day of our lives? (Newtonian) 
!

!

or 
What co-evolutionary pressures drove the 
development of brain-body systems? (Darwinian)



Disclaimer
In this line of research I am interested in understanding the 
actual problem the brain faces: the control of tendon-driven 
limbs.!
!

If you do not like, prefer, or use tendon-driven systems—kudos 
to you. Check your e-mail, I won’t mind ;)!
!

But if you are interested in understanding the structure-function 
relationships in biological or engineered tendon-driven 
systems…listen on.



In fact….

The cool problem here is that we have no say in the 
neuromechanical structure of the systems…. and we have 
to reverse engineer it.



Fundamental premise:!
Newton and Darwin are unforgiving

Mechanics describes the 
undeniable physical reality organisms must face.!

!

Evolutionary biology is the response to that 
reality. Organisms are a result of successful 

brain-body co-evolution.!
!

What can we learn from the human hand?



Where is one to begin?

From The Help by Kathryn Stockett, a novel about life in 
the ‘60s:!
…get an entry-level job... When you’re not making 
mimeographs ... look around, Don’t waste your time on the 
obvious things. Write about what disturbs you, 
particularly if it bothers no one else.



Some mechanics-based examples of 
things that have been disturbing me

Is the human hand really as neuromechanically 
redundant, robust and versatile as we say?

How does the brain interact with the spinal cord to 
produce dexterity?
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Redundancy as the central problem of 
motor control

!

Popular View:	


We have many more muscles (i.e., control 
degrees of freedom) than necessary. 	


!

This allows for infinite solutions.	


!

Therefore the CNS is faced with the tough 
computational problem of decision-making (or 
optimization).



But this is paradoxical with!
evolutionary biology and clinical reality



That is,
For decades, neuroscientists and biomechanists have 

been exploring how to effectively choose specific 
muscle actions from a set of infinite choices.	



but...	



If we are so redundant:	


Which muscle would you like to donate? 

Why do people seek clinical treatment for dysfunction 
even after mild pathology?	



Why would we evolve, encode, grow, maintain, repair, 
control, etc. so many muscles?



A (heretical) proposal

•Musculature is not “redundant” for natural 
behavior.


•i.e., only by adding “many” muscles can you 
remain functional and robust as you add realistic 
functional constraints.


•We have barely enough muscles for ecological 
function (neuroethology).



The musculo-skeletal system “filters” the 
propagation of neural commands, 

and defines feasible inputs and outputs
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Muscle actions: from tendon routing to 
joint torque and endpoint spaces 

Spoor, An, Yoshikawa, Brand, Leijnse, Valero-Cuevas, etc.
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Interesting fact: “Cross-over” tendons
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But it exists: The extensor mechanism 
system of the human fingers

Valero-Cuevas, 2005. J Biomech.



This forces us to (re)evaluate what is 
“easy” or “hard” to control, or what is a 

“simple” or “complex” hardware

Valero-Cuevas, 2005. J Biomech.



One analytical starting point: 
A working definition of “versatility”

Simply put: the ability to produce end-point 
force in every direction—i.e., controllability.!

Not to worry, it can be extended to motion in every direction!

Lucía Valero

Valero-Cuevas. A mathematical approach to the mechanical capabilities of limbs and fingers. 2009.



Versatility ≡ feasible torque and force sets 
that include the origin
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That is, producing end-point force in every Cartesian direction requires 
that you produce torques in every direction in “torque space”

Valero-Cuevas 1998, 2005, 2009

 convex sets remain convex under linear mapping 



All’s well
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How many muscles do you need to include 
the origin in torque/force space?
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Wait a minute... but N+1 > N

Valero-Cuevas 1998, 2005, 2009



Wait a minute... but N+1 > N
...so you need more muscles than degrees of freedom?

Valero-Cuevas 1998, 2005, 2009



Wait a minute... but N+1 > N
...so you need more muscles than degrees of freedom?
A versatile feasible torque set implies muscle redundancy for 

submaximal outputs!
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Muscle redundancy is not an accident of 
evolution, but rather an appropriate structural 

adaptation of the “hardware” for versatility.

Thus, versatile tendon-driven systems 
require “over-actuation.”



And each tendon contributes in unique ways
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So which muscle would you give up?
This begins to explain the evolutionary advantages of 

encoding, developing, maintaining, repairing, controlling 
apparently “too many” muscles.
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Redundancy does not imply robustness

With Jason Kutch	


J Biomech 2011

Now assistant professor at USC
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I am not saying that mathematical redundancy 
does not exist

Valero-Cuevas et al., 1998, 2005, 2009; Kutch & Valero-Cuevas, Inouye and Valero-Cuevas 2011

• After all, a line has an infinite set of points.!
• But I am saying that the solution space has a very well 

defined structure given by the anatomy of the hardware, 
and the constraints of the task. Any family of valid 
solutions will exhibit correlations.!

• …Thus if you measure muscle activity during meaningful 
tasks you will invariably see a reduction in dimensionality.!

• The question is not whether the muscle activity will be 
low-dimensional or not. This is expected. The question is 
how the nervous system inhabits and optimizes within 
that reduced solution space.!
!



Synergies: structured covariation among 
variables of interest

Don’t be confused by the many definitions of 
synergies. E.g.,!

Covariation of joint angles!
Covariation of muscle activations!

Covariation of finger forces!
etc.!

First ask yourself what covariation is being 
considered, and then where it comes from, and what 

it means.



Neural Synergies
Definition: Co-variation of muscle activation to 

simplify control of redundant muscles.!
!

When can muscle synergies be attributed to the 
nervous system vs. mechanics?
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Introduction

The muscle synergy hypothesis has received considerable
attention in the neuroscience community (see [1] for a review).
It posits that the central nervous system (CNS) activates muscles
using the flexible combination of a small number of patterns. This
hypothesis is commonly motivated as a potential mechanism by
which the nervous system can simplify the control of a large
number of muscles [2,3,4]. Counter-examples to the muscle
synergy hypothesis have been observed for the control of hand
musculature [5,6]. We therefore set out to answer the question: is
the human hand a unique system for not employing synergies, or
are the muscle synergies detected in other neuromuscular systems
actually of non-neural origin? Answering this question is crucial to
making progress in the field of motor neuroscience.

The muscle synergy hypothesis has been notoriously difficult to
prove or falsify [1]. Two distinct strategies have been employed to
generate muscle activity to test this hypothesis: behavior in
humans or animals, and direct stimulation of the motor system.
The behavioral approach simply observes the electromyographic
(EMG) activity in a large number of muscles during natural motor
behavior, and uses computational techniques to identify consistent
structure in the EMG signals across different tasks [3,7,8]. The
stimulation approach artificially excites a variety of locations in the
nervous system and shows that a relatively small number of muscle
activation patterns emerge [9]. The behavioral approach has the

advantage that it can be applied to a human or completely intact
animal during natural behavior, but has the disadvantage that the
task constraints could favor particular muscle activation patterns,
independent of neural control [1]. The stimulation approach has
the advantage that it is unaffected by the task constraints, but it is
unclear whether the complete repertoire of muscle activation
patterns can be elicited by these techniques [9]. Thus, existence of
muscle synergies of neural origin has not been conclusively proven.

Muscle coordination studies using the behavioral approach are
more relevant to natural human behavior [8] and disease states
[7], and repeatedly show that muscle activations are constrained to
a low-dimensional subspace across a variety of tasks. This potential
evidence for the muscle synergy hypothesis comes from a number
of behavioral studies, including cat postural control [3,10], human
postural control [11,12,13], human arm control [8,14], human leg
control [15], primate grasping [16], and natural lower limb
behaviors of the frog [2]. The basis vectors of these low-
dimensional subspaces are often called muscle synergies, and are
taken to represent the underlying neural strategies to simplify
multi-muscle control. An important class of behavioral experi-
ments examining the muscle synergy hypothesis examines EMG
responses to external perturbations (e.g. [3,10,12,13,14]). In this
work, we show that such low dimensionality induced by external
perturbation can be a product of unavoidable constraints related
to movement. Another important class of behavioral experiments
examines EMG during voluntary activation of muscles (e.g.
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• Versatility (controllability) requires redundancy 
• Redundancy does not imply robustness!
• Every muscle contributes uniquely to function!
!

From the structure of the solution space we now 
see: 
• Co-contraction is often not an option!
• Agonist-antagonist language loses meaning!
• Synergist muscles are not obvious or invariant 
• Can design tests for the existence of synergies of 
neural origin

Summary about redundancy
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A Novel Synthesis of Computational Approaches Enables
Optimization of Grasp Quality of Tendon-Driven Hands

Joshua M. Inouye, Jason J. Kutch, and Francisco J. Valero-Cuevas

Abstract—We propose a complete methodology to find the full set of fea-
sible grasp wrenches and the corresponding wrench-direction-independent
grasp quality for a tendon-driven hand with arbitrary design parameters.
Monte Carlo simulations on two representative designs combined with mul-
tiple linear regression identified the parameters with the greatest potential
to increase this grasp metric. This synthesis of computational approaches
now enables the systematic design, evaluation, and optimization of tendon-
driven hands.

Index Terms—Biologically inspired robots, grasping, mechanism design,
multifingered hands.

I. INTRODUCTION

Tendon-driven hands have been designed for the purposes of grasp-
ing and manipulation [1]–[6]. While their shortcomings can include
friction and tendon compliance [7], in certain applications (such as
dexterous hands), they have distinct advantages over torque-driven sys-
tems including lightweight, low backlash, small size, high speed, and
remote actuation [8], [9]. They can also offer significant design flexi-
bility in setting moment arms and maximal tendon tensions [8], which
allows optimization of system output capabilities for a particular task
while minimizing size and weight.

Several studies have addressed the problem of designing the topol-
ogy, tendon routing, or link design of tendon-driven manipulators (or
fingers) [2], [9]–[16]. According to [15], for example, “the knowl-
edge of maximum twist and wrench capabilities is an important tool
for achieving the optimum design of manipulators.” Optimization of
kinematic hand parameters, such as finger placements, link lengths,
and joint limits is addressed in [2], but we still lack comprehensive
methodologies to do large-scale optimization in these high-dimensional
parameter spaces. In addition, special attention has been given to the
design of manipulators with isotropic transmission characteristics (i.e.,
ability to transmit forces equally in all directions at the end effector) [2],
[10]–[14]. Advantages of this isotropy include more uniform tendon
force distribution and minimization of the dispersion of noise through
the system [2], [12]. However, it may be advantageous to design a fin-
ger with nonisotropic characteristics [9], as in the human hand [17]. In
addition, prior work on isotropic transmission does not consider limits
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12, 2012. This paper was recommended for publication by Associate Editor J.
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on tendon tensions, which is critical when designing small, dexterous
hands.

While there has been progress in designing and controlling tendon-
driven robotic hands, a complete methodology for the evaluation and re-
finement of alternative topologies based on general-purpose grasp qual-
ity (i.e., wrench-direction-independent) has not yet been synthesized
or implemented. Our novel synthesis of computational approaches now
allows us to integrate and expand prior work to eliminate the following
shortcomings of using previous techniques in isolation for optimization
of wrench-direction-independent grasp quality of tendon-driven hands.
The previously isolated computational approaches and the integration
we have accomplished are illustrated graphically in Fig. 1:

1) optimization intractability;
2) not considering tendon-driven architecture;
3) inability to calculate wrench-direction-independent grasp

quality.
The first shortcoming has been previously circumvented by using an

approximation of the full grasp wrench set itself using mathematically
convenient operations [18], [19]. If desired, our method can make
computations more efficient by a different method: mesh simplification
of the full grasp wrench set. This allows more accurate grasp quality
calculations than prior approximations. The second shortcoming has
not been addressed in several studies that only consider independent and
identical contact points for grasp planning or analysis [18]–[24]. We
have incorporated complete characterization of the force production
capabilities of arbitrary tendon-driven hands. The third shortcoming
was encountered in [25]. They used an efficient linear programming
approach to calculate a grasp quality metric for tendon-driven hands
based on a very specific, predefined task wrench space, in which a finite
number of required wrench magnitudes and directions was specified.
They note that their methodology does not generalize to the full set of
feasible grasp wrenches. Our integrated method does generalize to the
full set of feasible grasp wrenches and allows efficient calculation of
wrench-direction-independent grasp quality for tendon-driven hands.

Many other studies have addressed multifingered grasp [26]–[31].
Several other grasp quality metrics can be computed based on other cri-
teria, but their application to the design of tendon-driven mechanisms
is extremely limited [27]. Compliances are included in grasp analysis
for statically indeterminate grasps in [26] and for grasp stiffness anal-
ysis in [29], [30]. We calculate the boundaries of the grasp wrench set,
where the forces are deterministic. A software environment for grasp
synthesis is presented in [31], but it does not consider tendon-driven
architecture.

We demonstrate this novel synthesis of techniques and compare
grasp quality among two tendon-driven finger topologies, two grasp
configurations, and thousands of parameter combinations. We then
use Monte Carlo simulations to demonstrate how this computationally
efficient method can be used to optimize grasp quality metrics by tuning
specific design parameters.

II. PROCEDURE

A. Finding the Set of Feasible Grasp Wrenches and Computing
Grasp Quality

Assessing the quality of a specific grasp with a specific
hand/manipulator topology requires computing the feasible grasp
wrench set and its associated grasp quality. A flowchart is shown in
Fig. 2.

1552-3098/$31.00 © 2012 IEEE
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Fig. 1. Integration of techniques that were previously isolated.

4. Simplify feasible object force set (optional)

5. Translate contact forces to object wrenches

6. Find feasible grasp wrench set

7. Compute grasp quality 

1. Select initial grasp parameters

3. Find feasible object force set

Procedural Steps

Fig. 2. Flowchart of steps for finding feasible grasp wrench set and computing
grasp quality.

1) Select Initial Grasp Parameters: The calculation of grasp qual-
ity involves a few preliminary parameters to be specified, based on the
finger geometry, number of fingers, and placement of grasping points.
Grasp qualities will differ when these parameters are altered (although
not substantially if they are not greatly altered, in general). Therefore,
the finger geometry (i.e., D–H parameters of the finger), finger place-
ments, finger postures, and object size and shape must all be specified
before the rest of the steps of the procedure are carried out. Finger
geometry is used to find the analytical manipulator Jacobian (see Ap-
pendix A for further details) and the finger postures are determined
from the finger geometry and choice of finger placements (which is
based on object size and shape) on the object.

2) Build Fingertip Feasible Force Set: The next step is to build the
set of 3-D forces that each finger can produce while maintaining a static
posture. This set has been called the feasible force set [17], [32], or
force manipulability set in the strong sense (i.e., zero endpoint torque)
using the language of [33], [34].1 The user must specify the finger input
parameters of topology (i.e., tendon routing), maximal tendon tensions,
moment arm values, finger posture, and link lengths. Then the feasible
force set can be calculated using the method described in detail in the
Appendix. A visual example of a feasible force set is in Fig. 3.

1The force manipulability set in the weak sense is the set of all Cartesian
forces that can be exerted by a manipulator with no constraints on endpoint
torque. The strong sense force manipulability set is a subset of weak sense set
with the added constraint of zero endpoint torque.

Feasible 
force set

Friction cone 

Intersection

Feasible object 
force set

x

y

z

Fig. 3. Example of a fingertip feasible force set and its intersection with a
friction cone to produce a feasible object force set.

3) Find Feasible Object Force Set: The fingertip feasible force set
does not represent the actual forces that can be applied to the surface
of an object by the finger because fingertips can generally only push
against surfaces. To find these feasible object forces, we must find the
portion of the feasible force set that also lies inside a Coulomb friction
cone. We approximate this cone by using the convex hull of eight
vectors around the perimeter of the base of the cone, plus the origin, as
in [19], [26]. We intersect this cone with the feasible force set to find
the convex hull of feasible forces that may be applied to the object. We
call this set the feasible object force set, and an example is in Fig. 3.

The inputs required for this step are the static coefficient of friction
and the angle of finger contact (which is determined by object shape
and finger placement). We use the Qhull vertex enumeration algorithm
to complete the intersection of these convex sets.

4) Simplify Feasible Object Force Set: Due to the complexity and
high number of vertices that may define the feasible object force set for
each contact point, we may wish to simplify the set to make the analysis
more computationally efficient.2 The analysis presented in this paper
can still be completed without this step, but for thousands or millions
of calculations, this step can be very beneficial with minimal loss in

2The number of vertices of the grasp wrench set is on the order of mn , where
n is the number of feasible object force set vertices, and m is the number of
fingers [19]. Therefore, the computation time can become intractable for high
numbers of vertices.
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A	
  “fair”	
  comparison	
  between	
  human	
  and	
  
roboCc	
  hands

• Shadow	
  Hand	
  anthropometry	
  
• Same	
  sum	
  of	
  maximal	
  tendon	
  tensions	
  for	
  each	
  finger	
  (764N	
  for	
  
index	
  finger,	
  478N	
  for	
  thumb:	
  Valero-­‐Cuevas	
  et	
  al.	
  2000,	
  Pearlman	
  et	
  
al.	
  2004)	
  

• Same	
  finger.p	
  minimum	
  force	
  produc.on	
  capability	
  in	
  all	
  
direc.ons	
  (2.89N	
  for	
  index	
  finger,	
  5.37N	
  for	
  thumb:	
  Valero-­‐Cuevas	
  et	
  
al.	
  2000,	
  Pearlman	
  et	
  al.	
  2004)	
  

• Same	
  joint	
  diameters:	
  Valero-­‐Cuevas	
  et	
  al.	
  1998	
  and	
  2003

IJRR 2014
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Conclusions	
  about	
  design	
  of 
tendon-­‐driven	
  systems
• The	
  human	
  hand	
  has	
  cri.cal	
  
morphological	
  features	
  lending	
  it	
  very	
  
good	
  grasp	
  capabiliCes.	
  

!

• The	
  grasping	
  capabili.es	
  of	
  roboCc	
  hands	
  
can	
  be	
  dras.cally	
  improved	
  by	
  exploring	
  
the	
  full	
  design	
  space	
  
–Non-­‐uniform	
  maximal	
  tendon	
  tension	
  
distribuCons	
  

–Center	
  of	
  rotaCons	
  not	
  in	
  the	
  middle	
  of	
  the	
  joint	
  
–RoboCcists,	
  however,	
  tend	
  to	
  insist	
  on	
  2N	
  
designs!



Conclusions:
• There is much good and much bad…	



• If you are making tendon-driven systems: explore the 
design space!	



• I strongly encourage you to challenge the cortico-centric 
view of hand control, and explore the many possibilities 
afforded by a distributed, hierarchical, embedded logic.	



• Also, we owe much to sociobiological co-evolution of 
objects with our hands.	



• Think of how long it took you to learn to use your hand, 
and how susceptible it is to dysfunction!	



• I think we have barely enough degrees of freedom for 
natural function.	



• We are not done evolving ;)
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