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Some long term questions about
physical behavior

How does the neuromechanical system (or how
should a versatile machine) meet the necessary
and sufficient conditions for dexterous function?

and/or

What specific contributions from passive (e.g., the
body/hardware) and active (e.g., the brain)
components enable dexterous function?



My scientific approach to these problems
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Purpose of this talk

To be informative, but also provocative,
about the interaction between mechanics
and neural control for dexterous function.

Something we call
Neuromechanics



| approach these question as

What problem is the brain really solving every
day of our lives? (Newtonian)

Oor

What co-evolutionary pressures drove the
development of brain-body systems? (Darwinian)




Disclaimer

In this line of research | am interested in understanding the
actual problem the brain faces: the control of tendon-driven
limbs.

If you do not like, prefer, or use tendon-driven systems—kudos
to you. Check your e-mail, | won’'t mind ;)

But If you are interested in understanding the structure-function
relationships in biological or engineered tendon-driven
systems...listen on.



In fact....

The cool problem here is that we have no say in the
neuromechanical structure of the systems.... and we have
to reverse engineer It.



Fundamental premise:
Newton and Darwin are unforgiving

Mechanics describes the
undeniable physical reality organisms must face.

Evolutionary biology Is the response to that
reality. Organisms are a result of successful
brain-body co-evolution.

What can we learn from the human hand?



Where Is one to begin?

From The Help by Kathryn Stockett, a novel about life in
the ‘60s:

...get an entry-level job... When you're not making
mimeographs ... look around, Don’t waste your time on the
obvious things. Write about what disturbs you,
particularly if it bothers no one else.




Some mechanics-based examples of
things that have been disturbing me

Is the human hand really as neuromechanically
redundant, robust and versatile as we say?

How does the brain interact with the spinal cord to
produce dexterity?
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Redundancy as the central problem of
motor control

Popular View:
We have many more muscles (i.e., control
degrees of freedom) than necessary.

This allows for infinite solutions.

Therefore the CNS is faced with the tough
computational problem of decision-making (or
optimization).



But this Is paradoxical with
evolutionary biology and clinical reality



That is,

For decades, neuroscientists and biomechanists have
been exploring how to effectively choose specific
muscle actions from a set of infinite choices.

but...

If we are so redundant:
Which muscle would you like to donate!?
Why do people seek clinical treatment for dysfunction
even after mild pathology?
Why would we evolve, encode, grow, maintain, repair,
control, etc. so many muscles!?



A (heretical) proposal

* Musculature is not “redundant” for natural
behavior.

*i.e., only by adding “many” muscles can you
remain functional and robust as you add realistic
functional constraints.

*We have barely enough muscles for ecological
function (neuroethology).



The musculo-skeletal system “filters” the
propagation of neural commands,

and defines feasible Iinputs and outputs
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Muscle actions: from tendon routing to
joint torque and endpoint spages...._
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Building a feasible torque set for a
“‘complex” limb

5 muscles
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Interesting fact: “Cross-over” tendons

5 muscles

FTS 1,2,3

fingertip erxc_)r_s produce
positive torque

m5: a crazy tendon to put in a robotic system...



But it exists: The extensor mechanism
system of the human fingers
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This forces us to (re)evaluate what is
“easy” or “hard” to control, or what is a
“simple” or “complex” hardware
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One analytical starting point;

A working definition of “versatility”
Simply put: the ability to produce end-point
force In every direction—I.e., controllability.




Versatility = feasible torque and force sets
that include the origin

convex sets remain convex under linear mapping
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That Is, producing end-point force in every Cartesian direction requires
that you produce torques in every direction in “torque space”
Valero-Cuevas 1998, 2005, 2009



All's well




All's well

...but




How many muscles do you need to include
the origin In torque/force space?

2-link limb with 4 muscles (2*N) 2-link limb with 3 muscles (N+1)

-100 -50 0 50 100 0 50 100
Torque at joint 1

Torque at joint 1 _
feasible torque sets

(Newton-meters)

At least N+1 well-routed muscles



Wait a minute... but N+1 > N

Valero-Cuevas 1998, 2005, 2009



Wait a minute... but N+1 > N

...S0 you need more muscles than degrees of freedom?
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Walit a minute... but N+1 > N

...S0 you need more muscles than degrees of freedom?

A versatile feasible torqgue set implies muscle redundancy for
submaximal outputs!

Torque at joint 2
251

-25 T
-50 T

-/5 T

O Torque at joint 129 100 valero-Cuevas 1998, 2005, 2009



Thus, versatile tendon-driven systems
require “over-actuation.”

Muscle redundancy Is not an accident of
evolution, but rather an appropriate structural
adaptation of the “hardware” for versatility.



And each tendon contributes In unique ways
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And each tendon contributes In unigue ways

2

FTS 1,2,3,4

FTS 1,2,3

fingertip flexors produce
positive torque

Tendons define the size and shape of the feasible torque and
feasible force sets

So which muscle would you give up?

This begins to explain the evolutionary advantages of
encoding, developing, maintaining, repairing, controlling
apparently “too many” muscles.



Redundancy does not imply robustness
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Relationship between task constraints,
number of muscles and redundancy
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Moator Control, 2000, 4, 81-83
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Overcomplete Musculature or
Underspecified Tasks?

Gerald E. Loeb

The number of muscles in the body is actually fairly close to the number
required to control completely all its degrees of freedom. The apparent need
for a coordinating principle arises from the experimental practice of asking

subjects to perform simple movements and assumning that they make no im-

plicit assumptions about other constraints. Natural activities include implicit
constraints that differ greatly for different tasks and circomstances and that
would be met best by a nervous system free of a priori principles.

Key Words: control, redundancy, degrees of freedom, muscles
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Solution space for 14 muscles and M constraints
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Endpoint wrench magnitude and direction: 6
tbant Leg stiffness in 3 of 6 directions: 3
Energetic cost: 1

Sagittal Plane
Leg Model Total: 10

Valero-Cuevas et al., 1998, 2005, 2009; Kutch & Valero-Cuevas, Inouye and Valero-Cuevas 2011



Solution space for 14 muscles and M constraints

MUSCLE 3

The solution space is a low-dimensional femon_comsan
. . Max tension
subset of R of dimension 14-M

MUSCLE .

{  14-muscle leg A\

Max tension

Constraint 2
¥
Vo 772044 MUSCLE 1

gmax-

hamstr/ \

gastroc

Tension
. —rectfem
gvast Sample constraints for a real-world task

Endpoint wrench magnitude and direction: 6

tibpost

tban Leg stiffness in 3 of 6 directions: 3

soleus\K\

.

Energetic cost: 1
Sagittal Plane

Leg Model Total: 10

The main idea Is that constraints compound quickly for real-world tasks.
The solution space would be a very well defined 4-D object in R,

Valero-Cuevas et al., 1998, 2005, 2009; Kutch & Valero-Cuevas, Inouye and Valero-Cuevas 2011



| am not saying that mathematical redundancy

does not exist
- After all, a line has an infinite set of points.

- But | am saying that the solution space has a very well
defined structure given by the anatomy of the hardware,
and the constraints of the task. Any family of valid
solutions will exhibit correlations.

- ... Thus If you measure muscle activity during meaningful
tasks you will invariably see a reduction in dimensionality.

- The guestion Is not whether the muscle activity will be
low-dimensional or not. This is expected. The guestion Is
how the nervous system inhabits and optimizes within
that reduced solution space.

Valero-Cuevas et al., 1998, 2005, 2009; Kutch & Valero-Cuevas, Inouye and Valero-Cuevas 2011



Synergies: structured covariation among
variables of interest

Don’t be confused by the many definitions of
synergies. E.g.,

Covariation of joint angles
Covariation of muscle activations
Covariation of finger forces
etc.

First ask yourself what covariation is being
considered, and then where it comes from, and what
It means.



Neural Synergies

Definition: Co-variation of muscle activation to
simplify control of redundant muscles.

When can muscle synergies be attributed to the
nervous system vs. mechanics?

OPEN @ ACCESS Freely available online PLOS computaTiONAL BIOLOGY

Challenges and New Approaches to Proving the
Existence of Muscle Synergies of Neural Origin

Jason J. Kutch’, Francisco J. Valero-Cuevas'%*

2012



Summary about redundancy

e Versatility (controllability) requires redundancy
e Redundancy does not imply robustness
e Every muscle contributes uniquely to function

From the structure of the solution space we now
see:

* Co-contraction Is often not an option

e Agonist-antagonist language loses meaning

e Synergist muscles are not obvious or invariant

e Can design tests for the existence of synergies of
neural origin



So... if you could define the tendon paths, how
would you do it?
Why insists on the 2N design?

With Josh Inouye
currently post-doc at UVA

The International Journal of Robotics Research (IJRR), Special Issue on Mechanics and Design of Robotic Hands, 2013



An Optimized Solution to the Grasping
Problem: the Fitness of the Human Hand

_______

Shadow Hand



Miller et al 2005

HELL |

W [7 e
¥e ¥,
p J

vd

ATLLES

‘! 11, ,:

|
Lo )

\ Ky
Vaf
MYLOBATES

4 o YO ~

\4.. f, A“' \‘ "l

9 "" f » ?"‘ {) 1 rl’ - "'1‘f
.LI‘ 4 ‘.,‘ “. 'y : '.

298 VA ‘ WY ’

! ‘;; l ’/'!
i \ed

S DAUBLINTONIA LORY

NY Leus FLROODCTCVS
A A I - - '\
- -~
fal -1.‘1" p () ,“ .J‘_.\_ .“\,J
2 1 ] 'I | b
', \ /) ).'{-&‘ v:\"\'{ /' /B L 7
e )y ALY A AL/ . 7 e 4
\ "’ J % 7Y | | 4 P
N ;’ { / * } ’ ;‘ ’
l‘[ p
o o U 'u‘z/ L
u ; .
TARSIUS EONTOCLBUS ADTLS SAIMIR 44 1131
” ~ -l- _.A - - M -
A4 N 4 ~ 4“’ P A »",‘ 444
4 » \ "‘ ‘- 241 LUy
l' "l‘r ‘«; .'"l‘ 1‘1“ Y 74
I ‘ ) , e v
LY 1 O ! " p VTN
' > l ) 4 v I
- a( k"i ~ J LJ ‘ J ( J
MACACA CLRCOMTMECYS PRLS ROBYS
4 7 Al S & >
. - -~ o 4
’\ - 4 1 ‘._ o |
;-”4 ¥ L1 ‘)'Q A\ ot
) ) ’ | \ vl ‘-‘\,‘ \
'o b ! ) ' ) | 3
\ \ L - | ’ e
v X ' X /Q. » ’/‘
.\' ’ “.‘ , f J
‘ 4 | N
T S e R
FINGD FAN JRILLA dnd

Porter and Lemon 1993



Questions

* |s the human hand particularly well adapted for
grasp capabilities?

* How good are naive designs of anthropomorphic
robotic hands at grasping?

* How much can robotic hand grasping capabilities
be improved using bio-inspired characteristics?



Grasp Quality Computation Methodology

IEEE TRANSACTIONS ON ROBOTICS

Short Papers

A Novel Synthesis of Computational Approaches Enables
Optimization of Grasp Quality of Tendon-Driven Hands

Joshua M. Inouye, Jason J. Kutch, and Francisco J. Valero-Cuevas

Abstract—We propose a complete methodology to find the full set of fea-
siblegrasp wrenchesand the corresponding wrench-direction-independent
grasp quality for a tendon-driven hand with arbitrary design parameters.
Monte Carlo simulationson tworepresentative designscombined with mul-
tiplelinear regression identified the parameter swith the greatest potential
to increase this grasp metric. This synthesis of computational approaches
now enablesthe systematic design, evaluation, and optimization of tendon-
driven hands.



Grasp Quality Computation Methodology

Inouye et. al 2012

( Mesh Simplification:
Qslim Algorithm

Garland and Heckbert 1997,
Garland 2004
*Never before used in grasp analysis

Fu and Pollard 2006
Valero-Cuevas et. al 1998

Ciocarlie et. al 2005

/ | Miller and Allen 1999

Tendon-driven . )
Analysis ] Feasible Force Sets [Taskspeaﬁc Grasp | [ Vertex Enumeration: Global Grasp | [ Deformable Finger

\_

Chiacchio et, al 1997 Quality Metrics Qhull Algorithm Quality Metrics || Tangential Torque

Lee and Tsai 1991, Finotello et. al 1998

Murray et. al 1994 Li and Sastry 1988, Barber et. al 1996 Li and Sastry, 1988, Howe et. al 1988

Zhu and Wang 2003 Ferrari and Canny 1992




Grasp Quality Computation Methodology

Fingertip basis vectors Feasible force sets Feasible object force sets

é External force inside feasible object  External force outside feasible
wrench: grasp is maintained!! object wrench: grasp fails!!

___________________

____________




A “fair” comparison between human and
robotic hands

 Shadow Hand anthropometry

e Same sum of maximal tendon tensions for each finger (764N for
index finger, 478N for thumb: Valero-Cuevas et al. 2000, Pearlman et
al. 2004)

 Same fingertip minimum force production capability in all
directions (2.89N for index finger, 5.37N for thumb: Valero-Cuevas et
al. 2000, Pearlman et al. 2004)

e Same joint diameters: Valero-Cuevas et al. 1998 and 2003

IJRR 2014



Grasp Quality Computation Methodology

Fingertip basis vectors Feasible force sets Feasible object force sets

( External force inside feasible object  External force outside feasible
wrench: grasp is maintained!! object wrench: grasp fails!!

___________________




Grasp Quality Computation Methodology

Human hand: from cadaver measurements

Fingertip basis vectors

Robotic hand: from analytical solution




Methods: Analytical solution

Monte Carlo search on moment arm

matrices

(s )

Begin with fixed matrix
(N+1, N+2, N+3, or 2N)

i i

4
- b 3
= b 3
0 #

o oI I

F FHHFH T

0
0
0

- J

4

Randomly replace each
“#” with either 1 or -1

R:

1 -1 -1 1 -1
o 1 1 1 -1
0o 0 1 -1 -1
0o 0 0 -1 1 |
CAdmissibIe?

N\

Yes

Gompute grasp quaIitD

Crossover of best (highest
force production in all
directions) moment arm
matrices (similar to genetic
algorithm process)




Methods
Step #1 Step #2

Center of rotation random search I\/.Iaxi.malotendon tension
(Greedy Markov-Chain Monte Carlo) distribution random search
— (also MCMC)

e Starting point F; = F;
| e Rejected step
i e Accepted step
Fg,max — Random perturbation direction

4 o Random perturbation endpoint
! ! | \ Projection of perturbation
i ! endpoint onto constraint
| : Max Tendon
Upper bound : :

v

|

: } Extensor 4 Tension Sum

1

1 1 M

. 1y moment arm Joint
Center of rotation === /- R :

. ' 4 Flexor diameter
1
1
i ¥ moment arm

Lower bound

_____________________

Center of rotation perturbations

F
Max Tendon 1,mazx
. Tension Sum
Constraint;

Z Fi maz = MaxTendonTensionSum
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Grasp Quality (N)

Results

40 i (? =
- - -Human v Elng
— Intuitive 2N Design T """""""" T """"""""""""""""""""" e——t Optimized =

30+ 45% above |

L human
it l 435%
- 459 below ¢ 13% below human greater than
human intuitive 2N
design
N+1 v N+3
oo e - 2N
|
10r o
| : : | —
| [
-1 1 1 e
0 | N o
,\(\f&(&&o O ,,\/fz’;‘\o%
O“\Q@O v’\\é\\/\/Q@ ;\‘\6\\@Q}§(
@OQ OQ @\'@ OQ 6\

The International Journal of Robotics Research (IJRR), Special Issue on Mechanics and Design of Robotic Hands, 2013



Grasp Quality (N)

Results
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Results
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Conclusions about design of
tendon-driven systems

e The human hand has critical
morphological features lending it very
good grasp capabilities.

. » The grasping capabilities of robotic hands
can be drastically improved by exploring

the full design space

—Non-uniform maximal tendon tension
distributions

—Center of rotations not in the middle of the joint

—Roboticists, however, tend to insist on 2N
designs!




Conclusions:

There is much good and much bad...

If you are making tendon-driven systems: explore the
design space!

| strongly encourage you to challenge the cortico-centric
view of hand control, and explore the many possibilities
afforded by a distributed, hierarchical, embedded logic.

Also, we owe much to sociobiological co-evolution of
objects with our hands.

Think of how long it took you to learn to use your hand,
and how susceptible it is to dysfunction!

| think we have barely enough degrees of freedom for
natural function.

We are not done evolving ;)



Current and recent lab members

]
Open post-doc positions!
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