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Associative Models

● Perception evokes interpretation

– via learned association between models and percepts.

● Learning reactive and forward models is building 
associations.

– I perceive this – then I do that.

– I do this – then I perceive that.
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Association is not...

● bottom-up 
reconstruction

– structure from motion

– physical models

● just labels

– object, category, …

● bottom-up 
segmentation

● top-down 
segmentation

● static

Association...

● learns contingencies

● evokes models from 
observations

● expects observations 
from models

● is relevant to action

● is dynamic
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Structure

● geometry

– pose

– kinematics

– ...

● functional relations

Structure and Association go hand in hand.



3D Object Partitioning

Hardware:

 RGB-D(epth) cameras

(„3D-camera“)

Data to process:

 Colored 3D point clouds

(x,y,z,  r,g,b)

Goal:

 Partitioning of data into 

”objects/parts”

3D structural building blocks
(inspired by perceptual psychology)
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Example results

“Simple” objects

(OSD dataset)

“Part”

Segmentation
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11

N. Pugeault, F. Wörgöter and N. Krüger. Visual Primiives: Local, Condensed, and Semanically Rich Visual Descriptors and their 

Applicaions in Roboics. Internaional Journal of Humanoid Roboics, Volume: 7, Issue 3, pp. 379-405, 2010. 

Early Cognitive Vision

7/12/14Hierarchies of 
semantic 
structure

(inspired by
neuro-
physiology)
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Grasp Affordances of Edges and Surfaces

M. Popović, G. Kootstra, J. A. Jørgensen, D. Kragic and N. Krüger. Grasping Unknown Objects using an Early  Cogniive Vision System for General 

Scene Understanding. IROS 2011 (nominated as one of the inalists for an IROS award)

G. Kootstra, M. Popovic, J. A. Jorgensen, K. Kuklinski, K. Miatliuk, D. Kragic and N. Krüger. Enabling grasping of unknown objects through a 

synergisic use of edge and surface informaion. Internaional Journal of Roboics Research, vol. 31, no. 10, pp. 1190 - 1213, 2012.
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Hierarchical Markov Models
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Hierarchical Markov Models

Renaud Detry, Nicolas Pugeault, Justus Piater, A Probabilistic Framework 
for 3D Visual Object Representation. PAMI 31 (10), pp. 1790–1803, 2009



Hierarchical Markov Models
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Grasp Densities

R. Detry, D. Kraft, O. Kroemer, L. Bodenhagen, J. Peters, N. Krüger, J. Piater, Learning 
Grasp Affordance Densities. Paladyn Journal of Behavioral Robotics 2 (1), pp. 1–17, 2011
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A Grasp Density
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Peg-in-Hole with Force Feedback

● Movement and force/torque 
trajectories are captured 
during human 
demonstration.

● Learn variable stiffness by 
policy-search RL.

● Iterative, on-line adaptation: 
Positional trajectories are 
adapted to match the 
demonstrated force/torque 
profile.

B. Nemec, F. Abu-Dakka, J. A. Jørgensen, T. R. Savarimuthu, B. Ridge, H. G. 
Petersen, J. Jouffroy, N. Krüger, and A. Ude,  Transfer of Assembly Operations 
to New Workpiece Poses by Adaptation to the Desired Force Profile, ICAR 2013
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3D Inference From View-based Models

Damien Teney, Justus Piater, Multiview feature distributions for object detection and continuous 
pose estimation. Computer Vision and Image Understanding 125, pp. 265–282, 2014

● 2D edge and 
gradient 
distributions

● probabilistic 6-DoF 
pose inference
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Pose Inference from Shading



View Interpolation and Parallax



Outline

● We've seen:

●
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Syntax
● Single-digit counting/incrementation:

– memorized sequence = associated successors

● Carrying to new column (9 + 1 = 10):

– syntactic rule

● Addition of single-digit numbers:

– reduced to repeated incrementation

– memorized = sums associated to pairs of numbers

● Addition of general numbers:

– alternating associative and syntactic steps

● Multiplication of single-digit numbers:

– reduced to repeated addition

– memorized = products associated to pairs of numbers

● Multiplication of general numbers:

– alternating associative and syntactic steps



  

Multi-Object Concepts

Pick-up

pick-up

push

push

Pick-up

pick-up

push

push

Pick-up

Structural Bootstrapping
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Stacking Learning Problems

● Encode structural similarities within affordances

● Bootstrap paired-object affordance learning 
with learned single-object affordances
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9 categories

Rule based effects

Hand-coded shape features

20 interactions, 

Observed effects

Kinect based shape features

83 objects

Manually coded 83x83 effects

Kinect based shape features

# training examples

Affordance-based

Feature-based

Stacking Learning Problems
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Discussion

● Should robots operate associatively?

– Computers are great at symbolic reasoning! Let them play to their strengths! 
Why imitate humans?

● Perception is poor at providing reasonable symbols!

(Perhaps this is why humans did not evolve great facility at symbolic 
reasoning?)

● Machine Learning is strong.

– Let's put it to use in conjunction with structure and syntax!Let's get robots to 
thin-slice!

● Use numerous, complementary perceptual modalities.

– vision, wrench, touch, proprioception, …

● Simplify perception and control by exploiting the interaction dynamics.

– synergies, soft hands, external constraints, …
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